• Anúncio Global
    Respostas
    Exibições
    Última mensagem

racionalização de denominadores

racionalização de denominadores

Mensagempor cafinfa » Dom Mai 20, 2012 17:16

cafinfa
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 20, 2012 16:37
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: racionalização de denominadores

Mensagempor DanielFerreira » Dom Mai 20, 2012 17:21

\frac{5^{(x + 4)}.5^{3x}}{5^{(4x + 5)}} =


\frac{5^x . 5^4 . 5^{3x}}{5^{4x} . 5^5} =


\frac{5^4 . 5^{4x}}{5^{4x} . 5^5} =


\frac{5^4}{5^5} =


\frac{1}{5}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?