• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fazer a demonstração por absurdo

Fazer a demonstração por absurdo

Mensagempor apaula » Sex Fev 17, 2012 15:48

Não existem soluções racionais pra a equação {x}^{5}+{x}^{4}+{x}^{3}+{x}^{2}+1=0

-----------

Fazendo a demonstração por absurdo foi admitida a fração\frac{p}{q} irredutível q satisfaz a equação
\frac{{p}^{4}}{{q}^{4}}\left(\frac{p}{q}+1 \right)+\frac{{p}^{2}}{{q}^{2}}\left(\frac{p}{q}+1 \right)+1=0

\left(\frac{p}{q}+1 \right)\left(\frac{{p}^{4}}{{q}^{4}}+\frac{{p}^{2}}{{q}^{2}} \right)=-1

assim:


\left(\frac{p}{q}+1 \right)=1 e \left(\frac{{p}^{4}}{{q}^{4}}+\frac{{p}^{2}}{{q}^{2}} \right)=-1

ou

\left(\frac{p}{q}+1 \right)=-1 e \left(\frac{{p}^{4}}{{q}^{4}}+\frac{{p}^{2}}{{q}^{2}} \right)=1


Tomando

\left(\frac{p}{q}+1 \right)=-1

temos que p=-2q e ,portaanto, fração não é irreduível (é importante dizer q a fração não é irredutível?)

e depois?
apaula
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Bachrelado em Ciência e Tecnologia
Andamento: cursando

Re: Fazer a demonstração por absurdo

Mensagempor MarceloFantini » Sáb Fev 18, 2012 00:23

Se você tem o produto de dois números racionais que tem valor -1, não é verdade que um deles precisa ser um e outro precisa ser -1. Como um contra-exemplo simples, tome a = -2 e b= \frac{1}{2} de forma que ab = -1 mas |a| \neq 1 e |b| \neq 1. É importante lembrar que \frac{p^4}{q^4} + \frac{p^2}{q^2} tem de necessariamente ser positivo, pois é soma de dois quadrados e isto jamais será negativo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fazer a demonstração por absurdo

Mensagempor apaula » Sáb Fev 18, 2012 21:30

ainda assim não consegui resolver.


algume ajuda?
apaula
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Bachrelado em Ciência e Tecnologia
Andamento: cursando

Re: Fazer a demonstração por absurdo

Mensagempor MarceloFantini » Seg Fev 20, 2012 01:53

Suponha que existem raízes racionais e use o teorema das raízes racionais: http://pt.wikipedia.org/wiki/Teorema_da ... _racionais .
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 17 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.