• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas_cálculoM01_07

Problemas_cálculoM01_07

Mensagempor rhodry » Sáb Nov 19, 2011 16:59

Olá pessoal, se tiver alguém que puder me ajudar resolver está situação, agradeço, não tenho noção por onde começar... A situação é a seguinte. como a figura em anexo.

1. Uma pista oficial de atletismo é composta por 8 raias, cada uma delas com 1,2m de largura, todas são formadas por dois segmentos de reta e duas semicircunferências. O atleta que completar uma volta na raia mais interna percorre exatamente 400m. Assumindo que, durante uma competição, os atletas se mantenham no centro de sua raia, responda o que se pede.

----- Em uma pista oficial, o atleta que completar uma volta pela raia mais externa irá percorrer quanto a mais do que um atleta que completar a volta percorrendo a raia mais interna? Explique seu raciocínio, use [tex]\pi 3,14 e duas ordens decimais quando necessário.
Anexos

[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]

rhodry
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Out 25, 2011 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.