por bira19 » Qui Out 06, 2011 23:33
![\frac{\left(5-{x}^{2} \right)3x\left(2x-4 \right)}{\left(\sqrt[2]{5}+x \right)\sqrt[2]{x-2}} \frac{\left(5-{x}^{2} \right)3x\left(2x-4 \right)}{\left(\sqrt[2]{5}+x \right)\sqrt[2]{x-2}}](/latexrender/pictures/a340c062300daafd210072e4734624a6.png)
Não consigo simplificar para eliminar raizes, como resolver?
-
bira19
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Out 03, 2011 20:41
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em eletronica
- Andamento: formado
por bira19 » Dom Out 09, 2011 17:47
Obrigado.
-
bira19
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Out 03, 2011 20:41
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em eletronica
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- simplificação de expressões
por bianca12 » Qui Out 03, 2013 13:56
- 0 Respostas
- 775 Exibições
- Última mensagem por bianca12

Qui Out 03, 2013 13:56
Probabilidade
-
- simplificação de expressões
por bianca12 » Qui Out 03, 2013 14:07
- 1 Respostas
- 1017 Exibições
- Última mensagem por Bravim

Qui Out 03, 2013 16:48
Análise Combinatória
-
- Simplificação de raizes
por LuizCarlos » Sáb Mai 05, 2012 00:14
- 3 Respostas
- 2323 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 05, 2012 14:00
Álgebra Elementar
-
- Simplificação de raízes.
por Sobreira » Qui Mai 09, 2013 22:21
- 1 Respostas
- 1314 Exibições
- Última mensagem por brunnkpol

Qui Mai 09, 2013 23:49
Aritmética
-
- simplificação de raízes
por ezidia51 » Seg Mar 12, 2018 23:39
- 2 Respostas
- 2754 Exibições
- Última mensagem por ezidia51

Ter Mar 13, 2018 12:21
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.