• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potencia e raizes

Potencia e raizes

Mensagempor ginrj » Ter Mar 10, 2009 20:24

Olá amigos, trabalhando umas questoes do meu livro tive duvida em 3 questoes ^^ bobas + nao consigo resolvelas aehhuaehuae, gostaria de uma ajuda da galera ai pra que eu possa começar a calcular elas (por favor nao de resposta =D )

\left(3{}^{-2} \right){}^{6} : \left(3{}^{4} : 3{}^{2} \right){}^{-3}




\left(-1 \right){}^{-3} - \left(-2{}^{2} \right) . \left(-3 \right) + \left(-7 \right){}^{0}




\sqrt[4]{72} : \sqrt[2]{6}




são essas acima, na segunda questão eu consegui ir ate um certo ponto + dava algo errado, nao consigo saber o que é ^^
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Potencia e raizes

Mensagempor Marcampucio » Ter Mar 10, 2009 21:54

consulte um livro com as regras de potenciação. Ficam umas dicas:

(3^{-2})^6=3^{-12}

3^4:3^2=\frac{3^4}{3^2}=3^4.3^{-2}=3^{(4-2)}=3^2
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Potencia e raizes

Mensagempor Molina » Qua Mar 11, 2009 12:53

Bom dia.

Acho que com as dicas do Marcampucio você ja consegue resolver sem problemas suas dúvidas sobre potenciação.

Sobre a dúvida na raíz lembre-se que você precisa igualar os índices.

Desta forma: \sqrt[2]{{6}^{1}}=\sqrt[4]{{6}^{2}}=\sqrt[4]{36}

Note que eu multipliquei por 2 o índice e o expoente que estava no radicando, para conseguir que o índice ficasse igual a outra raiz.

Abraços e bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Potencia e raizes

Mensagempor ginrj » Qua Mar 11, 2009 16:57

mtoo obrigado, agora consegui resolver os exercicios :-D
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Potencia e raizes

Mensagempor ginrj » Qua Mar 11, 2009 19:32

so confirmando, o primeiro deu 3^-6 , o segundo deu -12 e o terceiro deu 6 raiz quarta de 2
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}