• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove que cada inteiro "a" tem um unico oposto

Prove que cada inteiro "a" tem um unico oposto

Mensagempor zero » Dom Mar 08, 2009 20:43

Algúem pode me ajudar neste prove ? Não sei nem como começar .... desde de já agradeço atenção de quem responder !
Abraço

Prove que cada inteiro "a" tem um unico oposto
zero
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 08, 2009 20:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Prove que cada inteiro "a" tem um unico oposto

Mensagempor andregoulart » Seg Mar 09, 2009 16:51

O conjunto dos inteiros A e sendo (+) e (.) operações e A a terna ( A,+,.) é um anel e pelas propriedades.

A1 (adição associativa ) Quaisquer que sejam a,b,c pertencente a A, tem-se que (a+b) +c = a+(b+c)
A2 ( Adição é comutativa). Quaisquer que sejam a,b,c pertencente a A, tem-se que a+b=b+a

O simétrico de um elemento a pertencente A é único. De fato se a1 e a2 são dois simétricos do conjunto, então pelas propriedades A1 e A2, temos que:

a2= 0+a2=(a1+a) +a2= a1+( a+a2)=a1+0= a1

Este único simétrico de alfa será simbolizado por - a.

Desculpe mais não consegui utilizar o tex e colocar com símbolos gregos. Espero ter ajudado.
andregoulart
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 09, 2009 15:08
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Prove que cada inteiro "a" tem um unico oposto

Mensagempor zero » Qua Mar 11, 2009 22:02

Obrigado amigo !
zero
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 08, 2009 20:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.