• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação 2º Grau!

Equação 2º Grau!

Mensagempor Jhosmy » Dom Jul 03, 2011 21:19

Na equação {2px}^{2} + 3pqx + 3q = 0, a soma das raízes é 9 e o produto 12. calcule p + q.

tenso esse exercício.

Saca esse aqui,

{2mx}^{2} -(3m +2 )x + 3 = 0 tenha raízes reais e desiguais.
Como assim desiguais? tenso.
Jhosmy
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jun 01, 2011 15:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Nenhuma
Andamento: cursando

Re: Equação 2º Grau!

Mensagempor luiz syncode » Dom Jul 03, 2011 22:31

baskara:
\\
x_1 = \frac{-b - \sqrt[]{b^2 - 4ac}}{2a} \\
x_2 = \frac{-b + \sqrt[]{b^2 - 4ac}}{2a}

onde para
a = 2p
b = 3pq
c = 3q

substituindo
\\
x_1 = \frac{-3pq - \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p} \\
x_2 = \frac{-3pq + \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p}

se
x_1 + x_2 = 9 \\e\\
x_1 * x_2 = 12

temos que
\\
\frac{-3pq - \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p} + \frac{-3pq + \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p}  = 9 \\
\frac{-3pq - \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p} * \frac{-3pq + \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p}  =  12
que é um sistema

simplificando temos:
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
(-3pq)^2 - ( (3pq)^2 - 4*2p*3q} )=  12 * (4p)^2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
 4*2p*3q=  12 * (4p)^2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
 4*2p*3q=  12 * (4p)^2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
 2q= 16p

acho que pode continuar daqui.


para a proxima vc devera fazer algo semelhante, mas tendo em consideração que o delta de baskara deve ser obrigatoira mente positivo para ter 2 x reais. se for negativo, a raiz de numero negativo é complexa. e se for zero, vc só terá uma raiz tocando o eixo x.

O x_1 e o x_2 devem ser diferentes.

Bom estudo
luiz syncode
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 01, 2011 12:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica, Fisica, Computação, Lógica
Andamento: cursando

Re: Equação 2º Grau!

Mensagempor MarceloFantini » Seg Jul 04, 2011 06:35

Jhosmy, note que o primeiro sai facilmente pelas relações de Girard:

x_1 + x_2 = \frac{-b}{a} = \frac{-3pq}{2p} = 9 \iff q = -6

x_1 \cdot x_2 = \frac{c}{a} = \frac{3q}{2p} = 12 \iff p = \frac{q}{8} = \frac{-3}{4}

Portanto, p+q= -6 - \frac{3}{4} = - \frac{27}{4}

No segundo, com raízes desiguais eu imagino que ele queira apenas dizer que são distintas, ou seja x_1 \neq x_2. Basta calcular o discriminante e definir que ele seja maior ou igual a zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação 2º Grau!

Mensagempor Jhosmy » Seg Jul 04, 2011 13:05

Valeu mesmo pessoal.
ajudou muito.
Jhosmy
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jun 01, 2011 15:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Nenhuma
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 42 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.