• Anúncio Global
    Respostas
    Exibições
    Última mensagem

propriedades de raiz

propriedades de raiz

Mensagempor theSinister » Ter Jun 21, 2011 22:04

existe uma propriedade da raiz que diz o seguinte : \left(\sqrt[n]{a} \right){}^{m}= \sqrt[n]{{a}^{m}} , ok?

minha duvida é a seguinte , no caso \left(\sqrt[]{a+1} \right){}^{2} , eu elevo tudo que esta dentro da raiz ao quadrado ? ou apenas o 1?
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: propriedades de raiz

Mensagempor LuizAquino » Ter Jun 21, 2011 22:53

{\left(\sqrt{a+1} \right)}^{2} = \sqrt{\left(a+1\right)^{2}}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: propriedades de raiz

Mensagempor Claudin » Qua Jun 22, 2011 01:41

LuizAquino escreveu:{\left(\sqrt{a+1} \right)}^{2} = \sqrt{\left(a+1\right)^{2}}



Vale ressaltar o seguinte: Utilizando a propriedade \sqrt[n]{a^m}= a^\frac{m}{n}

Portanto:

{\left(\sqrt{a+1} \right)}^{2} = \sqrt{\left(a+1\right)^{2}}=(a+1)^\frac{2}{2}= (a+1)^1

Por isso logicamente, quando elevamos uma raiz ao quadrado, pode retirar a raiz.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: propriedades de raiz

Mensagempor LuizAquino » Qua Jun 22, 2011 09:25

Claudin escreveu:{\left(\sqrt{a+1} \right)}^{2} = \sqrt{\left(a+1\right)^{2}}=(a+1)^\frac{2}{2}= (a+1)^1

Por isso logicamente, quando elevamos uma raiz ao quadrado, pode retirar a raiz.


Tome cuidado!

{\left(\sqrt{a+1} \right)}^{2} = \sqrt{\left(a+1\right)^{2}}= |a+1|

Perceba que não se pode simplesmente "retirar a raiz" e ficar apenas com o radicando.

O que sobra após a simplificação é o módulo do radicando.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: propriedades de raiz

Mensagempor Claudin » Qua Jun 22, 2011 10:19

Tome cuidado!

{\left(\sqrt{a+1} \right)}^{2} = \sqrt{\left(a+1\right)^{2}}= |a+1|

Perceba que não se pode simplesmente "retirar a raiz" e ficar apenas com o radicando.

O que sobra após a simplificação é o módulo do radicando.


Mesmo utilizando a propriedade --> \sqrt[n]{a^m}= a^\frac{m}{n}

ficaria em módulo? Só ficaria se eu resolvesse extraindo a raiz quadrada não?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: propriedades de raiz

Mensagempor theSinister » Qua Jun 22, 2011 11:13

vlw , então deixa eu ver se entendi,
não importa se o radicando é uma expressão , se estiver elevado a 2 eu posso tirar ele da raiz, é claro se o indice tbm for 2? certo?
vou aproveitar e tirar outra duvida numa equação do tipo : \sqrt[]{5x+3}+\sqrt[]{7x-5}=\sqrt[]{4-2x}
ainda to começando a estudar esse assunto e to meio perdido , mas quando é assim , eu elevo os dois menbros da equação ao quadrado? eu vi varias pessoas resolverem dessa forma ,mas não entendi exatamente o pq, quando se tem equações envolvendo radcais qual é a melhor tecnica para resolver?
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: propriedades de raiz

Mensagempor Claudin » Qua Jun 22, 2011 11:45

Geralmente quando existe uma equação envolvendo raízes quadradas, as pessoas elevam ambos os membros ao quadrado (automaticamente), para que possam "retirar as raízes", se você basear na propriedade que eu mencionei logo em cima da pra compreender. Por exemplo:

\sqrt[2]{x^1}= \sqrt[2]{16^1}\Rightarrow (x^\frac{1}{2})^2= (16^\frac{1}{2})^2\Rightarrow x^\frac{2}{2}=16^\frac{2}{2}\Rightarrow x=16

Quando você elevar ambos os membros ao quadrado, utilizando a propriedade, você ficaria com a multiplicação de expoentes que resultaria em 1, falando a grosso modo, "retirando a raíz".

\frac{1}{2}. 2 = \frac{2}{2}= 1
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: propriedades de raiz

Mensagempor LuizAquino » Qua Jun 22, 2011 12:31

Claudin escreveu:Mesmo utilizando a propriedade --> \sqrt[n]{a^m}= a^\frac{m}{n}

ficaria em módulo? Só ficaria se eu resolvesse extraindo a raiz quadrada não?


A regra é:
\sqrt[n]{x^n} = \begin{cases}|x|,\,\textrm{se } n \textrm{ par;} \\ x,\,\textrm{se } n \textrm{ \'impar;}\end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: propriedades de raiz

Mensagempor theSinister » Qua Jun 22, 2011 14:13

ah entendi, mas então quando o indice das raizes for 3 por um exemplo, eu elevo os dois lados ao cubo, e assim sucessivamente?essa é a regra? e quando na mesma equação tiver raizes de indices diferentes, o que fazer ?
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: propriedades de raiz

Mensagempor LuizAquino » Qua Jun 22, 2011 15:22

theSinister escreveu:ah entendi, mas então quando o índice das raízes for 3 por um exemplo, eu elevo os dois lados ao cubo, e assim sucessivamente? essa é a regra?

Basicamente, sim.

theSinister escreveu:e quando na mesma equação tiver raízes de índices diferentes, o que fazer?

Basicamente, você pode primeiro eliminar uma das raízes e depois eliminar a outra.

Por exemplo, digamos que você tenha um radical com índice 2 e outro com índice 3 em uma mesma equação. Você pode primeiro elevar ambos os membros da equação por 2 para eliminar o radical com índice 2. Em seguida, você eleva ambos os membros da equação por 3 para eliminar o radical com índice 3.

Você disse que ainda está começando a estudar esse conteúdo. Não tenha pressa. Provavelmente você ainda estudará essa parte.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: propriedades de raiz

Mensagempor theSinister » Qua Jun 22, 2011 16:16

vlw cara , me ajudou muito, a questão é que ja revisei toda a parte de fatoração, peguei uma lista com mais de 50 exercicios e demorei mas consegui resolver rsrsrsr, ja revisei potenciação tbm , mas agora to começando com expressões envolvendo radicais...até agora esta bem facil (uma vez que to aprendendo sozinho pela net) a minha maior dificuldade está sendo quando tem equações com radicais...mas vou continuar firme e as duvidas vou tirando aqui no forum .
vlw e obg.!!!
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?