por theSinister » Ter Jun 21, 2011 22:04
existe uma propriedade da raiz que diz o seguinte :
![\left(\sqrt[n]{a} \right){}^{m}= \sqrt[n]{{a}^{m}} \left(\sqrt[n]{a} \right){}^{m}= \sqrt[n]{{a}^{m}}](/latexrender/pictures/3ab38a568fa51bce6f8b2a28e8a1c5d7.png)
, ok?
minha duvida é a seguinte , no caso
![\left(\sqrt[]{a+1} \right){}^{2} \left(\sqrt[]{a+1} \right){}^{2}](/latexrender/pictures/a7f63cd3a1570650d28eb6e5e53e81cf.png)
, eu elevo tudo que esta dentro da raiz ao quadrado ? ou apenas o 1?
-
theSinister
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Abr 23, 2011 18:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Claudin » Qua Jun 22, 2011 01:41
LuizAquino escreveu:
Vale ressaltar o seguinte: Utilizando a propriedade
![\sqrt[n]{a^m}= a^\frac{m}{n} \sqrt[n]{a^m}= a^\frac{m}{n}](/latexrender/pictures/86d4ba6090aaf3eaca6cf235f488ae05.png)
Portanto:

Por isso logicamente, quando elevamos uma raiz ao quadrado, pode retirar a raiz.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qua Jun 22, 2011 09:25
Claudin escreveu:
Por isso logicamente, quando elevamos uma raiz ao quadrado, pode retirar a raiz.
Tome cuidado!

Perceba que não se pode simplesmente "retirar a raiz" e ficar apenas com o radicando.
O que sobra após a simplificação é o módulo do radicando.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Qua Jun 22, 2011 10:19
Tome cuidado!

Perceba que não se pode simplesmente "retirar a raiz" e ficar apenas com o radicando.
O que sobra após a simplificação é o módulo do radicando.
Mesmo utilizando a propriedade -->
![\sqrt[n]{a^m}= a^\frac{m}{n} \sqrt[n]{a^m}= a^\frac{m}{n}](/latexrender/pictures/86d4ba6090aaf3eaca6cf235f488ae05.png)
ficaria em módulo? Só ficaria se eu resolvesse extraindo a raiz quadrada não?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por theSinister » Qua Jun 22, 2011 11:13
vlw , então deixa eu ver se entendi,
não importa se o radicando é uma expressão , se estiver elevado a 2 eu posso tirar ele da raiz, é claro se o indice tbm for 2? certo?
vou aproveitar e tirar outra duvida numa equação do tipo :
![\sqrt[]{5x+3}+\sqrt[]{7x-5}=\sqrt[]{4-2x} \sqrt[]{5x+3}+\sqrt[]{7x-5}=\sqrt[]{4-2x}](/latexrender/pictures/d17962d7dca9ce4bb36aefc77f7b8dc2.png)
ainda to começando a estudar esse assunto e to meio perdido , mas quando é assim , eu elevo os dois menbros da equação ao quadrado? eu vi varias pessoas resolverem dessa forma ,mas não entendi exatamente o pq, quando se tem equações envolvendo radcais qual é a melhor tecnica para resolver?
-
theSinister
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Abr 23, 2011 18:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Claudin » Qua Jun 22, 2011 11:45
Geralmente quando existe uma equação envolvendo raízes quadradas, as pessoas elevam ambos os membros ao quadrado (automaticamente), para que possam "retirar as raízes", se você basear na propriedade que eu mencionei logo em cima da pra compreender. Por exemplo:
![\sqrt[2]{x^1}= \sqrt[2]{16^1}\Rightarrow (x^\frac{1}{2})^2= (16^\frac{1}{2})^2\Rightarrow x^\frac{2}{2}=16^\frac{2}{2}\Rightarrow x=16 \sqrt[2]{x^1}= \sqrt[2]{16^1}\Rightarrow (x^\frac{1}{2})^2= (16^\frac{1}{2})^2\Rightarrow x^\frac{2}{2}=16^\frac{2}{2}\Rightarrow x=16](/latexrender/pictures/f995176041ecae5d1ad8ef85cb21e535.png)
Quando você elevar ambos os membros ao quadrado, utilizando a propriedade, você ficaria com a multiplicação de expoentes que resultaria em 1, falando a grosso modo, "retirando a raíz".

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qua Jun 22, 2011 12:31
Claudin escreveu:Mesmo utilizando a propriedade -->
![\sqrt[n]{a^m}= a^\frac{m}{n} \sqrt[n]{a^m}= a^\frac{m}{n}](/latexrender/pictures/86d4ba6090aaf3eaca6cf235f488ae05.png)
ficaria em módulo? Só ficaria se eu resolvesse extraindo a raiz quadrada não?
A regra é:
![\sqrt[n]{x^n} = \begin{cases}|x|,\,\textrm{se } n \textrm{ par;} \\ x,\,\textrm{se } n \textrm{ \'impar;}\end{cases} \sqrt[n]{x^n} = \begin{cases}|x|,\,\textrm{se } n \textrm{ par;} \\ x,\,\textrm{se } n \textrm{ \'impar;}\end{cases}](/latexrender/pictures/a018a371f7320e783c2bebe058a6bc88.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por theSinister » Qua Jun 22, 2011 14:13
ah entendi, mas então quando o indice das raizes for 3 por um exemplo, eu elevo os dois lados ao cubo, e assim sucessivamente?essa é a regra? e quando na mesma equação tiver raizes de indices diferentes, o que fazer ?
-
theSinister
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Abr 23, 2011 18:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Qua Jun 22, 2011 15:22
theSinister escreveu:ah entendi, mas então quando o índice das raízes for 3 por um exemplo, eu elevo os dois lados ao cubo, e assim sucessivamente? essa é a regra?
Basicamente, sim.
theSinister escreveu:e quando na mesma equação tiver raízes de índices diferentes, o que fazer?
Basicamente, você pode primeiro eliminar uma das raízes e depois eliminar a outra.
Por exemplo, digamos que você tenha um radical com índice 2 e outro com índice 3 em uma mesma equação. Você pode primeiro elevar ambos os membros da equação por 2 para eliminar o radical com índice 2. Em seguida, você eleva ambos os membros da equação por 3 para eliminar o radical com índice 3.
Você disse que ainda está começando a estudar esse conteúdo. Não tenha pressa. Provavelmente você ainda estudará essa parte.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por theSinister » Qua Jun 22, 2011 16:16
vlw cara , me ajudou muito, a questão é que ja revisei toda a parte de fatoração, peguei uma lista com mais de 50 exercicios e demorei mas consegui resolver rsrsrsr, ja revisei potenciação tbm , mas agora to começando com expressões envolvendo radicais...até agora esta bem facil (uma vez que to aprendendo sozinho pela net) a minha maior dificuldade está sendo quando tem equações com radicais...mas vou continuar firme e as duvidas vou tirando aqui no forum .
vlw e obg.!!!
-
theSinister
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Abr 23, 2011 18:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Propriedades da raiz (fácil)
por TAE » Qui Mai 10, 2012 17:39
- 2 Respostas
- 1309 Exibições
- Última mensagem por TAE

Qui Mai 10, 2012 18:25
Álgebra Elementar
-
- [Raiz Cúbica e Raiz Quadrada] Muito difícil achar a solução.
por Leocondeuba » Sáb Mai 11, 2013 19:27
- 2 Respostas
- 7247 Exibições
- Última mensagem por Leocondeuba

Sáb Mai 11, 2013 20:42
Aritmética
-
- Limite - como resolver um lim quando temos raiz^2 e raiz^3.
por Monica santos » Sex Ago 16, 2013 14:22
- 4 Respostas
- 3844 Exibições
- Última mensagem por young_jedi

Sex Ago 16, 2013 19:01
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Como resolver raiz dentro de raiz ?
por natyncb » Qui Abr 12, 2012 00:31
- 10 Respostas
- 13220 Exibições
- Última mensagem por LuizAquino

Sex Ago 24, 2012 07:50
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo: limite com raiz dentro de raiz
por roberto_trebor » Sáb Fev 15, 2014 20:45
- 1 Respostas
- 2090 Exibições
- Última mensagem por Man Utd

Dom Fev 16, 2014 17:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.