• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prova por redução ao absurdo

Prova por redução ao absurdo

Mensagempor Aliocha Karamazov » Sex Jun 10, 2011 21:34

Fala, galera. Parei no meio desse exercício, gostaria que alguém desse uma ajuda.

Provar por redução ao absurdo que:

Não existem soluções racionais para a equação x^5+x^4+x^3+x^2+x+1=0

Inicialmente, eu supus que axiste um número racional, escrito como uma fração irredutível \left(\frac{p}{q}\right)

Dessa forma: \left(\frac{p}{q}\right)^5+\left(\frac{p}{q}\right)^4+\left(\frac{p}{q}\right)^3+\left(\frac{p}{q}\right)^2+\left(\frac{p}{q}\right)+1=0 \Rightarrow \frac{p^5}{q^5} +\frac{p^4}{q^4} +\frac{p^3}{q^3} +\frac{p^2}{q^2} +\frac{p}{q} +1=0

\Rightarrow \frac{p^4}{q^4}.\left(\frac{p}{q} +1\right) +\frac{p^2}{q^2}.\left(\frac{p}{q} +1\right) +\left(\frac{p}{q} +1\right)=0

\left(\frac{p}{q} +1\right).\left(\frac{p^4}{q^4} +\frac{p^2}{q^2} +1\right)=0

Dessa maneira:

\left(\frac{p}{q} +1\right)=0 ou \left(\frac{p^4}{q^4} +\frac{p^2}{q^2} +1\right)=0

Para \left(\frac{p}{q} +1\right)=0, temos que p=-q, o que é um absurdo, pois, dessa maneira, \left(\frac{p}{q}\right) não é uma fração indivisível.

O problema é mostrar que para \left(\frac{p^4}{q^4} +\frac{p^2}{q^2} +1\right)=0, a fração \left(\frac{p}{q}\right) também não é divisível, para que eu consiga terminar a demonstração.

Agradeço desde já!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Prova por redução ao absurdo

Mensagempor Guill » Sáb Jul 23, 2011 22:35

Use o método da substituicão:

x=\left(\frac{p}{q} \right)^2


A equacão:

\left(\frac{p}{q} \right)^4 + \left(\frac{p}{q} \right)^2 + 1 = 0


Substituindo:

x^2+x+1=0

x = \frac{-1+\sqrt[]{3}i}{2}
x = \frac{-1-\sqrt[]{3}i}{2}



Pela substituicão:

x=\left(\frac{p}{q} \right)^2


\frac{p}{q}=\sqrt[]{\frac{-1-\sqrt[]{3}i}{2}}
\frac{p}{q}=\sqrt[]{\frac{-1+\sqrt[]{3}i}{2}}


Isso é um absurdo. Portanto não existem raízes reais.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.