• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prova por redução ao absurdo

Prova por redução ao absurdo

Mensagempor Aliocha Karamazov » Sex Jun 10, 2011 21:34

Fala, galera. Parei no meio desse exercício, gostaria que alguém desse uma ajuda.

Provar por redução ao absurdo que:

Não existem soluções racionais para a equação x^5+x^4+x^3+x^2+x+1=0

Inicialmente, eu supus que axiste um número racional, escrito como uma fração irredutível \left(\frac{p}{q}\right)

Dessa forma: \left(\frac{p}{q}\right)^5+\left(\frac{p}{q}\right)^4+\left(\frac{p}{q}\right)^3+\left(\frac{p}{q}\right)^2+\left(\frac{p}{q}\right)+1=0 \Rightarrow \frac{p^5}{q^5} +\frac{p^4}{q^4} +\frac{p^3}{q^3} +\frac{p^2}{q^2} +\frac{p}{q} +1=0

\Rightarrow \frac{p^4}{q^4}.\left(\frac{p}{q} +1\right) +\frac{p^2}{q^2}.\left(\frac{p}{q} +1\right) +\left(\frac{p}{q} +1\right)=0

\left(\frac{p}{q} +1\right).\left(\frac{p^4}{q^4} +\frac{p^2}{q^2} +1\right)=0

Dessa maneira:

\left(\frac{p}{q} +1\right)=0 ou \left(\frac{p^4}{q^4} +\frac{p^2}{q^2} +1\right)=0

Para \left(\frac{p}{q} +1\right)=0, temos que p=-q, o que é um absurdo, pois, dessa maneira, \left(\frac{p}{q}\right) não é uma fração indivisível.

O problema é mostrar que para \left(\frac{p^4}{q^4} +\frac{p^2}{q^2} +1\right)=0, a fração \left(\frac{p}{q}\right) também não é divisível, para que eu consiga terminar a demonstração.

Agradeço desde já!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Prova por redução ao absurdo

Mensagempor Guill » Sáb Jul 23, 2011 22:35

Use o método da substituicão:

x=\left(\frac{p}{q} \right)^2


A equacão:

\left(\frac{p}{q} \right)^4 + \left(\frac{p}{q} \right)^2 + 1 = 0


Substituindo:

x^2+x+1=0

x = \frac{-1+\sqrt[]{3}i}{2}
x = \frac{-1-\sqrt[]{3}i}{2}



Pela substituicão:

x=\left(\frac{p}{q} \right)^2


\frac{p}{q}=\sqrt[]{\frac{-1-\sqrt[]{3}i}{2}}
\frac{p}{q}=\sqrt[]{\frac{-1+\sqrt[]{3}i}{2}}


Isso é um absurdo. Portanto não existem raízes reais.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 32 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.