• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ÁLGEBRA

ÁLGEBRA

Mensagempor Faria » Sáb Mai 21, 2011 17:43

Boa tarde profº, td bem? Eu e meu grupo estamos resolvendo uma lista de exercìcios para

nota. Faltam apenas 4 e, 16 já resovidos. Não temos mais idéia do que fazer. Peço por favor

sua ajuda.

1) Sendo n um número natural, a expressão ({2}^{n+1}+{2}^{n+2})*({3}^{n+2}-{3}^{n+1})/{6}^{n+2} é igual a:

Neste exercício tentamos resolver como função exponecial e, também aplicando a distributiva.

2) Se n pertence a N e n>1, então o valor de \sqrt[n]{20/{4}^{n+2}+{2}^{2n+2}}

Aqui tentamos resolver o denominador por exponencial e, simplicar o que era possível.

3) O valor de {x}^{4}-{y}^{4}/{x}^{3}-{x}^{2}*y+x*{y}^{2}-{y}^{3}, para x=111 e

y=112, é:

No exercício em questão tentamos aplicar as regras de fatoração, evidência e simplificação.

4) Calcule o valor de {a}^{2}+1/{a}^{2}, sabendo que a+1/a=5.

No último exercício tentamos calcular o mmc e, depois montamos uma equação do 2º grau,

mas como nos casos anteriores não conseguimos finalizar.

Agradecemos por sua atenção,

Um abraço.
Faria
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mai 21, 2011 16:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em processamento de dados
Andamento: formado

Re: ÁLGEBRA

Mensagempor MarceloFantini » Sex Set 23, 2011 19:13

Lembre-se que 2^{n+1} = 2^n \cdot 2, 2^{n+2} = 2^n \cdot 2^2, 3^{n+2} = 3^n \cdot 3^2, 3^{n+1} = 3^n \cdot 3, 6^{n+2} = 6^n \cdot 6^2 e que podemos fazer 6^n = (2 \cdot 3)^n = 2^n \cdot 3^n. Tente fazer o primeiro usando isso.

Uma tática quase idêntica se aplica ao segundo, basta lembrar um número com expoente negativo basta inverter a fração, ou seja, a^{-b} = \frac{1}{a^b}.

Para o terceiro, basta usar que x^4 -y^4 = (x-y)(x+y)(x^2 +y^2) e x^3 -x^2y +xy^2 -y^3 = (x-y)(x^2+y^2).

No último, faça \left( a + \frac{1}{a}\right)^2 = 5^2 e veja o que acontece.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: