• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação

Potenciação

Mensagempor Abelardo » Qua Mar 23, 2011 18:51

Qual é o valor de {2008}^{2}-{2007}^{2}+{2006}^{2}-{2005}^{2}+...+{2}^{2}-{1}^{2}?
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação

Mensagempor LuizAquino » Qua Mar 23, 2011 19:13

Note que {2008}^{2}-{2007}^{2}+{2006}^{2}-{2005}^{2}+\ldots+{2}^{2}-{1}^{2} = \sum_{i=1}^{1004} (2i)^2 - (2i-1)^2 .

Mas, temos que \sum_{i=1}^{1004} (2i)^2 - (2i-1)^2 = \sum_{i=1}^{1004} 4i-1 .

Agora, tente terminar.
Editado pela última vez por LuizAquino em Qua Mar 23, 2011 23:33, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Potenciação

Mensagempor Abelardo » Qua Mar 23, 2011 22:18

Que curioso, hoje mesmo estava procurando algum material básico sobre somatório e produtório, que dizem ser ótimas ferramentas matemáticas... na parte ''PEDIDOS DE MATERIAIS'' desse fórum, deixei um tópico a procura desse material.


Bom professor, como não sei usar somatório, tentei resolver a questão de outra forma. Veja como fiz, por favor. O senhor pode conferir se está correta a resposta?

Coloquei que 2008 é igual a x, logo terei \underbrace{{2008}^{2}-{2007}^{2}}




{x}^{2}-{(x-1)}^{2}+\underbrace{{2006}^{2}-{2005}^{2}}




+  {(x-2)}^{2}-{(x-3)}^{2}+...+\underbrace{{2}^{2}-{1}^{2}}




+...+{(x-2006)}^{2}-{(x-2007)}^{2}


Percebi que existem 1004 ''parcelas'' no total. Quando começei a resolver cada parcela vi que cada uma é o resultado de uma subtração em que 2x é o minuendo e que o subtraendo é um número natural, onde todos os subtraendos formam uma P.A. de razão -4.

{x}^{2}-{(x-1)}^{2}=2x-1

{(x-2)}^{2}-{(x-3)}^{2}= 2x-5

{(x-2)}^{2}-{(x-3)}^{2}=2x-4013

Fiquei com a seguinte expressão --> (2x-1)+(2x-5)+...+(2x-4013)

Logo terei 2x.1004=4.032.064 e usei a fórmula da soma de uma P.A. para encontrar o valor da soma de todos os subtraendos \frac{(-4014)x1004}{2}=2.015.028

Como resposta encontrei 4.032.064-2.015.028=2.017.036
Estou certo? Acho que com somatório deve ser mil vezes mais simples, mas não sei utilizar a ferramenta. Caso o senhor tenha alguma apostila falando sobre somatório ou produtório e puder disponibilizar, ficarei gratíssimo.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação

Mensagempor LuizAquino » Qua Mar 23, 2011 23:37

\sum_{i=1}^{1004} (2i)^2 - (2i-1)^2 = \sum_{i=1}^{1004} 4i-1

= 4\sum_{i=1}^{1004} i - \sum_{i=1}^{1004} 1

=  - 1004\cdot 1  + 4\frac{(1+1004)1004}{2}

= 2017036

Quanto aos somatórios, eu tenho certeza que se você procurar direitinho pelo Google deve achar muito material.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.