por juliomarcos » Dom Set 14, 2008 00:46
Prove que todo corpo é domínio de integridade:
Definições do livro do Castrucci:
Um corpo é um anel com elemento unidade 1, onde todo elemento -{0}(elemento neutro da +) possui inverso.
Um domínio de integridade (ou anel de integridade) é um anel comutativo(vale a comutatividade na segunda operação(1) ) com elemento unidade e não possui divisores próprios do zero(2).
Todo corpo é domínio de integridade. Prova:
Seja C um corpo. Como vale o elemento inverso em C, a.a'=a'.a=1, logo também vale a comutatividade para a segunda operação. (1)
Suponha por absurdo que 0 tem inverso.
0.0'=1
0.0' + 0 = 1 + 0
0.(0' + 0) = 1
0 = 1
Absurdo, já que 0 é diferente de 1, logo 0.0'

1 ou 0.0' = 0, mas como 0' não existe em C, 0 não tem divisores próprios.(2)
Algum perito em teoria dos conjuntos pode corrigir isto pra mim? Grato.
-
juliomarcos
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Set 14, 2008 00:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por admin » Qua Set 17, 2008 04:04
Olá
juliomarcos, boas-vindas!
Assumo uma modesta postura de aluno, tanto é que minha atual formação está longe de sanar dúvidas da graduação de um modo geral.
Ainda assim, acredito que sua suposição por absurdo deva ser outra.
Como queremos mostrar que os elementos do corpo não possuem divisores de zero, supomos por absurdo que eles possuem.
Eis uma demonstração de uma das minhas aulas em Álgebra II, também encontrada em alguns livros.
Adicionei alguns comentários:
Suponha por absurdo que existam

,

tais que

e

e

Note acima que esta suposição é equivalente a dizer que
não é um domínio e ainda

e
são divisores de zero!
Como

é corpo e

, existe

tal que

Então

juliomarcos, veja um destaque sobre o absurdo: inicialmente havia a suposição de que

.
Como concluímos que

, então
não é divisor de zero!
E pela definição de domínio de integridade:
Seja

um anel comutativo com unidade.
Dizemos que A é um anel de integridade ou domínio de integridade ou simplesmente domínio se A satisfaz a seguinte condição:
ou 
Ou seja, como

,

é um domínio, pois

por hipótese!
Espero ter ajudado.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por juliomarcos » Qua Set 17, 2008 11:16
Obrigado pela resposta e pelas boas-vindas. Só mais uma coisa. Posso afirmar que todo anel com elemento unidade é um anel comutativo?
Gostaria de saber "qual" definição de Corpo você usou. Estou dizendo isso porque no livro "Curso de Álgebra vol1" de Ábramo Hefez, a comutatividade da segunda operação está definida pra qualquer anel, já no livro do Castrucci, um anel que goze da comutatividade na segunda operação é chamado anel comutativo. O resto da prova eu entendi. Muito obrigado.
-
juliomarcos
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Set 14, 2008 00:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por admin » Ter Set 23, 2008 17:22
Olá
juliomarcos, boa-tarde!
juliomarcos escreveu:Posso afirmar que todo anel com elemento unidade é um anel comutativo?
Não. Um contra-exemplo é o anel

(o conjunto de todas as matrizes reais 2x2). Cuja unidade é:

Este anel não é comutativo.
juliomarcos escreveu:Gostaria de saber "qual" definição de Corpo você usou.
Sobre a definição de corpo, citarei duas que usei, uma dada em aula, cuja bibliografia indicarei em seguida:
Definição: Um anel comutativo com unidade é chamado de corpo se todo elemento

,

, é inversível (isto é, existe

tal que

).
Notação:

é único e indicado por

.
Bibliografia do curso:
1. Herstein, I.N., "Topics in Algebra", 2nd Edition, John Wiley & Sons (tem tradução).
2. Dean, R.A., "Elements of Abstract Algebra", Wiley International Edition, John Wiley and Sons.
3. Gonçalves, A., "Introdução à Álgebra", IMPA.
4. Lang, S., "Algebraic Structures", Addison - Wesley Publishing Company (tem tradução).
5. Fraleigh, J.B., "A first course in abstract algebra", Addison Wesley.
Eu tenho o livro do Adilson, o 3º da lista, cuja definição é a seguinte:
Definição: Se um domínio de integridade

satisfaz a propriedade:

tal que

,
dizemos que

é um
corpo.
Lembrando que antes há a seguinte definição para domínio de integridade:
Se

é um anel comutativo, com unidade e sem divisores de zero, dizemos que

é um
domínio de integridade.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por juliomarcos » Qua Set 24, 2008 01:03
Agora e depois de ter tirado umas dúvidas com a professora, compreendi totalmente o assunto. Muito Obrigado.
-
juliomarcos
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Set 14, 2008 00:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Leis do Cancelamento em Domínios de Integridade
por m0x0 » Sáb Jul 23, 2011 20:18
- 0 Respostas
- 1767 Exibições
- Última mensagem por m0x0

Sáb Jul 23, 2011 20:18
Álgebra Elementar
-
- Corpo
por GehSillva7 » Qui Fev 25, 2016 12:55
- 2 Respostas
- 1693 Exibições
- Última mensagem por GehSillva7

Dom Fev 28, 2016 15:40
Aritmética
-
- Trabalho e potência de um corpo
por HenriqueGS » Dom Jul 09, 2017 18:20
- 0 Respostas
- 1870 Exibições
- Última mensagem por HenriqueGS

Dom Jul 09, 2017 18:20
Física
-
- Derivada Corrijam por favor
por costav13 » Seg Out 28, 2013 12:03
- 2 Respostas
- 1575 Exibições
- Última mensagem por costav13

Sáb Nov 02, 2013 19:58
Cálculo: Limites, Derivadas e Integrais
-
- Derivada Corrijam por favor
por costav13 » Seg Out 28, 2013 18:12
- 1 Respostas
- 1143 Exibições
- Última mensagem por Taka

Sáb Nov 02, 2013 16:53
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.