• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: congruencias

Álgebra: congruencias

Mensagempor Caeros » Sáb Mar 19, 2011 18:34

Estou estudando o material que postei neste fórum e tenho algumas dúvidas:

Mostre que {x}^{2}+1\equiv0(mod8) não tem soluções:
Solução:
Para qualquer que seja x inteiro, temos:
x \equiv 0,1,2,3,4,5,6,7(mod8)\Rightarrow aqui entendo que é aplicada a propriedade que diz: "Sabemos que a \equiv b(modm) \Leftrightarrow a = b+mk, para algum k \in Z. Neste
caso b coincidirá com o resto da divisão euclidiana de "a " por "m ",se e somente, 0 \:\leq \:b\: <\: m"

logo,

{x}^{2}\:\equiv\:0,1,4,9,16,25,36,49(mod8) \Rightarrow aqui compreendo que foi aplicada a

propriedade que diz: "{a}^{n}\:\equiv\:{b}^{n}(mod\:m)

Daí,

{x}^{2}+1\equiv\:1,3,7,5,5,7,3,1(mod8) \Rightarrow já aqui não consigo compreender qual propriedade foi aplicada ou como chegou a estes valores???? :?: :?: :?: :?: :?: :?:

continuando:

Ou melhor

{x}^{2}+1\equiv\:1,3,5,7(mod8) :arrow: como não entendi anteriormente não entendi como estes valores provam a insolubilidade!!! :?: :?: :?: :?:

O que garante a insolubilidade de {x}^{2}+1\equiv0(mod8)
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: congruencias

Mensagempor Renato_RJ » Sáb Mar 19, 2011 20:56

Eu não consegui chegar neste resultado, veja o que eu fiz:

x^2 + 1 \equiv 0 (mod 8)

Mas montando as classes de equivalência módulo 8 ou sistema completo de resto módulo 8 para x teremos:

x =  \{0, 1, 2, 3, 4, 5, 6, 7\}

Fazendo x^2 e usando a propriedade já citada, teremos:

x^2 = \{0, 1, 4, 9, 16, 25, 36, 49\}

Como estamos trabalhando com as classes de resto, teremos:

9 \equiv 1 (mod 8) \, \textrm{,} \, 16 \equiv 0 (mod 8) \, \textrm{,} \, 25 \equiv 1 (mod 8) \, \textrm{,} \, 36 \equiv 4 (mod 8) \, \textrm{e} \, 49 \equiv 1 (mod 8)

Logo teremos:

x^2 = \{0, 1, 4, 1, 0, 1, 4, 1\} \, \textrm{mas} \, 1 \equiv 1 (mod 8) \Rightarrow \, x^2 + 1 = \{1, 2, 5, 2, 1, 2, 5, 2\}

Então teremos:

x^2 + 1 \equiv 1, 2, 5 (mod 8)

Aqui você percebe que não há solução para x^2 + 1 \equiv 0 (mod 8), pois o resto da divisão será 1, 2 ou 5...

Não sei se estou certo, mas pela lógica, parece que sim... Se estou errando em algum lugar, gostaria de saber a onde (fiquei curioso)...
Editado pela última vez por Renato_RJ em Sáb Mar 19, 2011 22:59, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Álgebra: congruencias

Mensagempor Renato_RJ » Sáb Mar 19, 2011 22:57

Esse seu caso me lembrou a seguinte demonstração:

Provar que, qualquer que seja o inteiro ímpar a, o resto da divisão de a^2 por 8 é 1.

Solução:

Os restos possíveis da divisão de a por 8 são 1, 3, 5 ou 7 (chamamos isso de sistema reduzido de resíduo módulo 8, pois só estão nele os restos relativamente primos a 8).

Logo:

a \equiv 1, 3, 5, 7 (mod 8)

a^2 \equiv 1, 9, 25, 49 (mod 8)

Como 9 \equiv 1 (mod 8) \, \textrm{,} \, 25 \equiv 1 (mod 8) \, \textrm{e} \, 49 \equiv 1 (mod 8) teremos:

a^2 = 1, 1, 1, 1 (mod 8) \Rightarrow \, a^2 \equiv 1 (mod 8)

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Álgebra: congruencias

Mensagempor Caeros » Dom Mar 20, 2011 00:38

Olá Renato, obrigado por colaborar,mas quem quer saber tem que perguntar:
estou começando a estudar este assunto, então vou lhe perguntar:
1) O que vc está dizendo com "classes de equivalência módulo 8"? sei que congruência é uma relação de equivalência, então vc está dizendo que x = {0, 1, 2, 3, 4, 5, 6, 7} é o conjunto dos restos que se podem ter na divisão por 8 ou os valores que x pode assumir? Quer dizer estes números se relacionam com 8 por ser os retos relacionados a ele na divisão?

2) e o sistema completo de resto módulo 8 para x, então este é o conjunto de números que podem ser restos?

3) de onde saiu {x}^{2}+1\equiv\:1,3,7,5,5,7,3,1(mod8)? na resposta que postei pois tirei do material e se estiver errado tenho que corrigir a fonte ou seja onde consegui o material.
Mais uma vez obrigado está me ajudando bastante. :y:
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: congruencias

Mensagempor Renato_RJ » Dom Mar 20, 2011 03:27

Caeros escreveu:Olá Renato, obrigado por colaborar,mas quem quer saber tem que perguntar:
estou começando a estudar este assunto, então vou lhe perguntar:
1) O que vc está dizendo com "classes de equivalência módulo 8"? sei que congruência é uma relação de equivalência, então vc está dizendo que x = {0, 1, 2, 3, 4, 5, 6, 7} é o conjunto dos restos que se podem ter na divisão por 8 ou os valores que x pode assumir? Quer dizer estes números se relacionam com 8 por ser os retos relacionados a ele na divisão?


Caeros, concordo plenamente, se deseja saber tem mais é que perguntar !!!
Lembre-se que estamos tratando de divisão pelo algoritmo de Euclides, isto é, x = 8k + r, onde r é o resto.. As classes de equivalência na verdade são o que chamamos de partições, elas representam os restos das divisões por 8 (neste caso) então cada classe dessa é um conjunto separado, veja:
Quando falamos de classe 0, por exemplo, estamos falando de todos os números inteiros cuja a divisão por 8 dá resto zero, então 0 = {...,8,16,32,48,..} e quando falamos de classe 1 estamos falando do conjunto dos números inteiros cuja a divisão por 8 dá resto 1, então 1 = {...,9,17,33,49,..}.

Caeros escreveu:2) e o sistema completo de resto módulo 8 para x, então este é o conjunto de números que podem ser restos?


Exatamente, como eu disse anteriormente... Classe 3 significa todos os inteiros cuja a divisão por 8 tenha resto 3, então 3 = {...,11,19,35,51,..}.

Caeros escreveu:3) de onde saiu {x}^{2}+1\equiv\:1,3,7,5,5,7,3,1(mod8)? na resposta que postei pois tirei do material e se estiver errado tenho que corrigir a fonte ou seja onde consegui o material.
Mais uma vez obrigado está me ajudando bastante. :y:


Boa pergunta, eu também quero saber... Se me apresentassem esse problema sem a demonstração, eu teria feito do jeito que escrevi, eu também não entendi a onde o autor obteve esses números e sabe o que é mais interessante ?? Andei pesquisando na internet agora e vi um pdf onde o autor faz o mesmo exercício da mesma maneira, agora eu fiquei confuso, pois devo ter errado em algum lugar (ou no raciocínio da questão)... Vamos esperar o pessoal mais experiente (Luiz Aquino, Molina ou o Fantini) lerem a questão e postarem suas opiniões ou correções.

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 17 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.