• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: Teoria dos conjuntos5

Álgebra: Teoria dos conjuntos5

Mensagempor Caeros » Dom Mar 13, 2011 19:18

Bem, nesta questão a solução que dei acho correta mas não bate com o gabarito, porque?

Sejam E= {-3,-2,-1,0, 1,2,3} e R= {(x,y) \inE x E/x + \left|x \right|=y + \left|y \right|}. Mostre que R é uma relação de equivalência e descreva E/R.

Solução:
R é reflexiva pois (1,1),(2,2),(3,3),(-1,-1),(-2,-2),(-3,-3),(0,0) \in R;
R é simétrica pois (1,1),(2,2),(3,3),(-1,-1),(-2,-2),(-3,-3),(0,0) \in R;
R é transitiva pois (1,1),(2,2),(3,3),(-1,-1),(-2,-2),(-3,-3),(0,0) \in R;

E/R:
[1]= {y\:\in\:E/yR1}={1};
[2]= {y\:\in\:E/yR2}={2};
[3]= {y\:\in\:E/yR3}={3};
[0]= {y\:\in\:E/yR0}={0};
[-1]= {y\:\in\:E/yR-1}={-1};
[-2]= {y\:\in\:E/yR-2}={-2};
[-3]= {y\:\in\:E/yR-3}={-3};

então E/R penso ser: E/R={{0},{1},{2},{3},{-1},{-2},{-3}};

mas no gabarito tem E/R={{-3,-2,-1,0},{1},{2},{3}}, porquê? :?: :?: :?:
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Teoria dos conjuntos5

Mensagempor LuizAquino » Dom Mar 13, 2011 20:44

Seja R uma relação de equivalência em um conjunto A. O conjunto de todos os elementos que estão relacionados com um elemento a de A é chamado de classe de equivalência de
a, e é denotada por [a]. Ou seja, temos que:
[a] = \{s \,|\, (s,\, a) \in R\}

No exercício, temos o conjunto E= {-3,-2,-1,0, 1,2,3} e relação de equivalência R= \{(x,y) \in E \times E \,|\; x + \left|x \right|=y + \left|y \right|\}.

Note, por exemplo, que (-3,\,-1)\in R, já que -3 + |-3| = -1 + |-1|. Mas, em sua solução -3\not\in [-1].

Reveja as suas classes de equivalência.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Álgebra: Teoria dos conjuntos5

Mensagempor Caeros » Sáb Mar 19, 2011 10:38

Compreendi obrigado!
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.