• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: Indução Finita

Álgebra: Indução Finita

Mensagempor Caeros » Ter Mar 08, 2011 13:13

Prezados colegas ajude-me a compreender a seguinte sentença e solução:

Seja a sequência {a}_{1} = 1, {a}_{2} = 3 e {a}_{n} = {a}_{n-1} + {a}_{n-2},\foralln\in\aleph com n \geq 3. Mostre que
{a}_{n}<{\left( \frac{7}{4}\right)}^{n},\foralln \in\aleph


Solução. Seja P (n) : a proposição: a < {\left( \frac{7}{4}\right)}^{n},\foralln \in\aleph.

A afirmação P (1) é verdadeira porque

{a}_{1} = 1 < \left( \frac{7}{4}\right)

Seja k \in\aleph; arbitrário e suponha-se que P (k) é verdadeira, isto é
{a}_{k}<{\left( \frac{7}{4}\right)}^{k},(hipótese de indução)

pretende provar-se que P (k +1) é verdadeira, ou seja,

{a}_{k+1}<{\left( \frac{7}{4}\right)}^{k+1}
Usando a hipótese de indução obtém-se:

{a}_{k+1}={a}_{k}+{a}_{k-1}\Rightarrowjá a partir daqui não compreendo esta igualdade???????????? :?: . *-)

<{\left( \frac{7}{4}\right)}^{k}+{\left( \frac{7}{4}\right)}^{k-1}
={\left( 1+\frac{7}{4}\right)}{\left(\frac{7}{4}\right)}^{k-1}

Uma vez que:
{\left(\frac{11}{4}\right)}<3<{\left(\frac{7}{4}\right)}^{2}\Rightarrow{\left(\frac{11}{4}\right)}<{\left(\frac{7}{4}\right)}^{2}

Conclui-se que:


{a}_{k+1}<\left(\frac{7}{4}\right)}^{2}{\left( \frac{7}{4}\right)}^{k-1}={\left( \frac{7}{4}\right)}^{k+1}
O princÌpio de indução finita permite assim concluir que a afirmação P (n)
é veradeira, para todo o n \in\aleph.

Editado pela última vez por Caeros em Ter Mar 08, 2011 16:43, em um total de 1 vez.
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor Abelardo » Ter Mar 08, 2011 15:08

Você quer provar {a}_{n}={\left(\frac{7}{4} \right)}^{n} ou {a}_{n}={a}_{n-1}+ {a}_{n-2}
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra: Indução Finita

Mensagempor MarceloFantini » Ter Mar 08, 2011 16:42

Abelardo, ele não quer provar nenhuma dessas coisas.

A relação que você sabe é que pra encontrar um elemento, você soma os dois anteriores. Usando isso:

a_{k+1} = a_k + a_{k-1} < \left( \frac{7}{4} \right)^k + \left( \frac{7}{4} \right)^{k-1} = \left( \frac{7}{4} \right)^k + \left( \frac{7}{4} \right)^k \cdot \left( \frac{7}{4} \right)^{-1}

\therefore a_{k+1} < \left( \frac{7}{4} \right)^k \cdot \left( 1 + \frac{4}{7} \right) = \left( \frac{7}{4} \right)^k \cdot \left( \frac{11}{7} \right) \therefore a_{k+1} < \left( \frac{7}{4} \right)^{k+1}

Demonstrado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor Caeros » Ter Mar 08, 2011 17:38

Olá Fantini obrigado deu uma clareada e percebi que a própria resolução está apresentando alguns erros!! esta resolução retirei de um livro, e não estava compreendendo, mas a dúvida já é outra!

Não compreendi como você partindo da expressão: = \left( \frac{7}{4} \right)^k \cdot \left( \frac{11}{7} \right) chegou a expressão: \left( \frac{7}{4} \right)^{k+1} na resposta que vc postou?? :?:
aguardo :y:
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor MarceloFantini » Ter Mar 08, 2011 18:02

\frac{11}{7} < \frac{7}{4} , então: \left( \frac{7}{4} \right)^k \cdot \left( \frac{11}{7} \right) < \left( \frac{7}{4} \right)^k \cdot \left( \frac{7}{4} \right) = \left( \frac{7}{4} \right)^{k+1}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor Caeros » Ter Mar 08, 2011 21:40

Valeu Fantini por colaborar! :y:
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor MarceloFantini » Ter Mar 08, 2011 21:44

Sem problemas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 18 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?