• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: Indução Finita

Álgebra: Indução Finita

Mensagempor Caeros » Ter Mar 08, 2011 13:13

Prezados colegas ajude-me a compreender a seguinte sentença e solução:

Seja a sequência {a}_{1} = 1, {a}_{2} = 3 e {a}_{n} = {a}_{n-1} + {a}_{n-2},\foralln\in\aleph com n \geq 3. Mostre que
{a}_{n}<{\left( \frac{7}{4}\right)}^{n},\foralln \in\aleph


Solução. Seja P (n) : a proposição: a < {\left( \frac{7}{4}\right)}^{n},\foralln \in\aleph.

A afirmação P (1) é verdadeira porque

{a}_{1} = 1 < \left( \frac{7}{4}\right)

Seja k \in\aleph; arbitrário e suponha-se que P (k) é verdadeira, isto é
{a}_{k}<{\left( \frac{7}{4}\right)}^{k},(hipótese de indução)

pretende provar-se que P (k +1) é verdadeira, ou seja,

{a}_{k+1}<{\left( \frac{7}{4}\right)}^{k+1}
Usando a hipótese de indução obtém-se:

{a}_{k+1}={a}_{k}+{a}_{k-1}\Rightarrowjá a partir daqui não compreendo esta igualdade???????????? :?: . *-)

<{\left( \frac{7}{4}\right)}^{k}+{\left( \frac{7}{4}\right)}^{k-1}
={\left( 1+\frac{7}{4}\right)}{\left(\frac{7}{4}\right)}^{k-1}

Uma vez que:
{\left(\frac{11}{4}\right)}<3<{\left(\frac{7}{4}\right)}^{2}\Rightarrow{\left(\frac{11}{4}\right)}<{\left(\frac{7}{4}\right)}^{2}

Conclui-se que:


{a}_{k+1}<\left(\frac{7}{4}\right)}^{2}{\left( \frac{7}{4}\right)}^{k-1}={\left( \frac{7}{4}\right)}^{k+1}
O princÌpio de indução finita permite assim concluir que a afirmação P (n)
é veradeira, para todo o n \in\aleph.

Editado pela última vez por Caeros em Ter Mar 08, 2011 16:43, em um total de 1 vez.
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor Abelardo » Ter Mar 08, 2011 15:08

Você quer provar {a}_{n}={\left(\frac{7}{4} \right)}^{n} ou {a}_{n}={a}_{n-1}+ {a}_{n-2}
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra: Indução Finita

Mensagempor MarceloFantini » Ter Mar 08, 2011 16:42

Abelardo, ele não quer provar nenhuma dessas coisas.

A relação que você sabe é que pra encontrar um elemento, você soma os dois anteriores. Usando isso:

a_{k+1} = a_k + a_{k-1} < \left( \frac{7}{4} \right)^k + \left( \frac{7}{4} \right)^{k-1} = \left( \frac{7}{4} \right)^k + \left( \frac{7}{4} \right)^k \cdot \left( \frac{7}{4} \right)^{-1}

\therefore a_{k+1} < \left( \frac{7}{4} \right)^k \cdot \left( 1 + \frac{4}{7} \right) = \left( \frac{7}{4} \right)^k \cdot \left( \frac{11}{7} \right) \therefore a_{k+1} < \left( \frac{7}{4} \right)^{k+1}

Demonstrado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor Caeros » Ter Mar 08, 2011 17:38

Olá Fantini obrigado deu uma clareada e percebi que a própria resolução está apresentando alguns erros!! esta resolução retirei de um livro, e não estava compreendendo, mas a dúvida já é outra!

Não compreendi como você partindo da expressão: = \left( \frac{7}{4} \right)^k \cdot \left( \frac{11}{7} \right) chegou a expressão: \left( \frac{7}{4} \right)^{k+1} na resposta que vc postou?? :?:
aguardo :y:
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor MarceloFantini » Ter Mar 08, 2011 18:02

\frac{11}{7} < \frac{7}{4} , então: \left( \frac{7}{4} \right)^k \cdot \left( \frac{11}{7} \right) < \left( \frac{7}{4} \right)^k \cdot \left( \frac{7}{4} \right) = \left( \frac{7}{4} \right)^{k+1}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor Caeros » Ter Mar 08, 2011 21:40

Valeu Fantini por colaborar! :y:
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Indução Finita

Mensagempor MarceloFantini » Ter Mar 08, 2011 21:44

Sem problemas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.