• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função do segundo grau

Função do segundo grau

Mensagempor gustavoluiss » Dom Nov 28, 2010 17:27

Um laço de 100 cm qual maior area de um retangulo que se pode formar?

é função do segundo grau.
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Função do segundo grau

Mensagempor alexandre32100 » Ter Nov 30, 2010 17:05

O que seria o "laço"? Seria o perímetro?
Se for, tem a fórmula de Herão: S=\sqrt{p(p-a)(p-b)(p-c)}, onde p é o semiperímetro, no caso \dfrac{100}{2}=50.
S=\sqrt{50(50-a)(50-b)(50-c)}, mas ainda não achei nada que pudesse resolver.
alexandre32100
 

Re: Função do segundo grau

Mensagempor MarceloFantini » Ter Nov 30, 2010 19:05

A sua resolução não leva a muita coisa, pois carrega três incógnitas. Faça assim: monte um retângulo de dimensões x, x, 50-x e 50-x. A área é dada por A = (50-x)x = -x^2 +50x. Apenas encontre o vértice e pronto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função do segundo grau

Mensagempor alexandre32100 » Ter Nov 30, 2010 21:05

Por que seria este o triângulo de maior área?
alexandre32100
 

Re: Função do segundo grau

Mensagempor MarceloFantini » Qua Dez 01, 2010 00:05

Pois é o máximo da parábola. Quando ele disse laço eu entendi apenas um fio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função do segundo grau

Mensagempor alexandre32100 » Qua Dez 01, 2010 15:05

Hahaha. Nao acredito que li "triângulo" quando estava escrito retângulo. Desculpas aí, turma.
alexandre32100
 

Re: Função do segundo grau

Mensagempor MarceloFantini » Qua Dez 01, 2010 15:07

Acontece, não se preocupe!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função do segundo grau

Mensagempor alexandre32100 » Qua Dez 01, 2010 15:39

Mas, como é um retângulo, sejam x e y os lados destes, temos que 2(x+y)=100\therefore y=50-x.
Daí A=x(50-x)=-x^2+5x.
Agora sim entendi seu pensamento, Fantini.
alexandre32100
 


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron