• Anúncio Global
    Respostas
    Exibições
    Última mensagem

X e Y do vértice

X e Y do vértice

Mensagempor Luiza » Ter Ago 10, 2010 19:52

Olá , preciso de uma ajuda nesses dois exercicios !

Obrigada .

1 ) Determine o valor positivo de m para que a equação mx² - ( m+1) x + 1 = 0 tenha uma raíz igual a quarta parte da outra.

2 ) Determine o valor de k para que a equação x² - ( k+1) x+1=0 tenha uma raíz igual ao dobro da outra .
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: X e Y do vértice

Mensagempor Molina » Qua Ago 18, 2010 14:24

Boa tarde, Luiza.

Luiza escreveu:1 ) Determine o valor positivo de m para que a equação mx² - ( m+1) x + 1 = 0 tenha uma raíz igual a quarta parte da outra.


Vamos lá.
Considerando que x' e x'' são soluções da equação do 2º grau, pelo enunciado, temos que x'=\frac{x''}{4}, pois é a quarta parte da outra.

Usando a propriedade conhecida como "Soma e Produto", implica que:

x'+x''=\frac{m+1}{m}
x'*x''=\frac{1}{m}

Mas,

\frac{x''}{4}+x''=\frac{m+1}{m} \Rightarrow \frac{5x''}{4}=\frac{m+1}{m}

\frac{x''}{4}*x''=\frac{1}{m} \Rightarrow \frac{(x'')^2}{4}=\frac{1}{m} \Rightarrow x''=\frac{2}{\sqrt{m}}

Substituindo a segunda equação na primeira:

\frac{5*\frac{2}{\sqrt{m}}}{4}=\frac{m+1}{m}

\frac{10}{\sqrt{m}}=\frac{4m+4}{m}

\frac{100}{m}=\frac{16m^2+32m+16}{m^2}

100m^2=16m^3+32m^2+16m

100m=16m^2+32m+16

16m^2-68m+16

16m^2-68m+16

4m^2-17m+4

Resolvendo essa equação, a raiz positiva é m=4

Substituindo esse valor de m na equação original você verá que as raízes satisfazem a condição dada.

Achei esse procedimento longo demais, pode haver formas mais reduzidas de se fazer.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59