• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Múltiplo de 45

Múltiplo de 45

Mensagempor jones_slash » Seg Jun 07, 2010 22:49

Como posso mostrar q 13 elevado a 3n + 17 elevado a 3n é múltiplo
de 45 para todo n E N ímpar??
jones_slash
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 05, 2010 17:05
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletrotecnica e eletronica
Andamento: formado

Re: Múltiplo de 45

Mensagempor davi_11 » Ter Jun 08, 2010 14:22

13^3^n + 17^3^n = (13\times13^2)^n + (17\times17^2)^n

13^2 = 169\equiv 34\pmod {45}

13^3\equiv 13\times34\equiv 37\pmod {45}

13^3^n\equiv 37^n\pmod {45}

17^2\equiv 19\pmod {45}

17^3\equiv 17\times19\equiv 8\pmod {45}

(17^3)^n\equiv 8^n\pmod {45}

13^3^n + 17^3^n\equiv 37^n + 8^n\pmod {45}

se 13^3^n + 17^3^n divide 45, então 37^n + 8^n também divide.

o que é claro, já que a^n + b^n\equiv 0\pmod {a+b}
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado

Re: Múltiplo de 45

Mensagempor davi_11 » Qui Jun 10, 2010 14:12

Cometi um equivoco na ultima linha e peço mil desculpas, na verdade confundi as propriedades.
Talvez de para se provar usando indução sobre n.
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron