• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Múltiplo de 45

Múltiplo de 45

Mensagempor jones_slash » Seg Jun 07, 2010 22:49

Como posso mostrar q 13 elevado a 3n + 17 elevado a 3n é múltiplo
de 45 para todo n E N ímpar??
jones_slash
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 05, 2010 17:05
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletrotecnica e eletronica
Andamento: formado

Re: Múltiplo de 45

Mensagempor davi_11 » Ter Jun 08, 2010 14:22

13^3^n + 17^3^n = (13\times13^2)^n + (17\times17^2)^n

13^2 = 169\equiv 34\pmod {45}

13^3\equiv 13\times34\equiv 37\pmod {45}

13^3^n\equiv 37^n\pmod {45}

17^2\equiv 19\pmod {45}

17^3\equiv 17\times19\equiv 8\pmod {45}

(17^3)^n\equiv 8^n\pmod {45}

13^3^n + 17^3^n\equiv 37^n + 8^n\pmod {45}

se 13^3^n + 17^3^n divide 45, então 37^n + 8^n também divide.

o que é claro, já que a^n + b^n\equiv 0\pmod {a+b}
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado

Re: Múltiplo de 45

Mensagempor davi_11 » Qui Jun 10, 2010 14:12

Cometi um equivoco na ultima linha e peço mil desculpas, na verdade confundi as propriedades.
Talvez de para se provar usando indução sobre n.
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}