• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Múltiplo de 45

Múltiplo de 45

Mensagempor jones_slash » Seg Jun 07, 2010 22:49

Como posso mostrar q 13 elevado a 3n + 17 elevado a 3n é múltiplo
de 45 para todo n E N ímpar??
jones_slash
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 05, 2010 17:05
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletrotecnica e eletronica
Andamento: formado

Re: Múltiplo de 45

Mensagempor davi_11 » Ter Jun 08, 2010 14:22

13^3^n + 17^3^n = (13\times13^2)^n + (17\times17^2)^n

13^2 = 169\equiv 34\pmod {45}

13^3\equiv 13\times34\equiv 37\pmod {45}

13^3^n\equiv 37^n\pmod {45}

17^2\equiv 19\pmod {45}

17^3\equiv 17\times19\equiv 8\pmod {45}

(17^3)^n\equiv 8^n\pmod {45}

13^3^n + 17^3^n\equiv 37^n + 8^n\pmod {45}

se 13^3^n + 17^3^n divide 45, então 37^n + 8^n também divide.

o que é claro, já que a^n + b^n\equiv 0\pmod {a+b}
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado

Re: Múltiplo de 45

Mensagempor davi_11 » Qui Jun 10, 2010 14:12

Cometi um equivoco na ultima linha e peço mil desculpas, na verdade confundi as propriedades.
Talvez de para se provar usando indução sobre n.
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.