• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Valor Desconhecido em Uma Sentença] Qual Resolução Correta?

[Valor Desconhecido em Uma Sentença] Qual Resolução Correta?

Mensagempor ShadowOnLine » Qua Ago 23, 2017 22:09

Enunciado
Um pai deseja distribuir R$ 11,50 entre seus três filhos.
Quer dar R$ 1,00 a mais para Mauro do que para Beto e R$ 1,50 a mais para Beto do que para Chico.
Quanto deve receber cada um?




Resolução 01
Para resolver esse enunciado, o estudante considerou o valor de Chico como sendo "x", o valor de Beto como sendo "x+1,5" - que é o valor de Chico mais R$ 1,5 - e considerei o valor de Mauro como sendo "x+1,5+1" - que é o valor de Beto mais R$ 1,00.

11,5 = x + x+1,5 + x+1,5 +1
11,5 = 3x + 4
11,5 - 4 = 3x
7,5 = 3x
2,5 = x
x = 2,5

De onde concluímos que Chico recebeu R$ 2,50 e Beto recebeu R$ 4,00 e Mauro recebeu R$ 5,00 totalizando o valor que o pai desejou distribuir, pois substituindo "x" temos:
11,5 = 2,5 + 2,5+1,5 + 2,5+1,5 +1
11,5 = 7,5 + 4
11,5 = 11,5





Resolução 02
Para resolver esse enunciado, o estudante considerou valor de Chico como sendo "x", o valor de Beto como sendo "x+1,5" - que é o valor de Chico mais R$ 1,5 - e, por uma falha no pensamento na hora de traduzir o enunciado para a linguagem algébrica, o estudante considerou o valor de Mauro como sendo "x+1" apenas.

11,5 = x + x+1,5 + x +1
11,5 = 3x + 2,5
11,5 - 2,5 = 3x
9 = 3x
3 = x
x = 3

De que agora concluímos que Chico recebeu R$ 3 e Beto recebeu R$ 4,50 e Mauro recebeu R$ 4,00 totalizando o valor que o pai desejou distribuir, pois substituindo "x" temos:
11,5 = x + x+1,5 + x+1
11,5 = 3 + 3+1,5 + 3 +1
11,5 = 11,5





Conclusão
Apesar de em ambas as resoluções os valores encontrados se verifiquem quando substituímos "x", apenas a Solução 01 é a correta. Veja que nela Mauro recebeu R$ 5,00 que é justamente um real a mais do que Beto. Mas na Solução 02, apesar da conta algébrica fechar, Mauro acaba recebendo menos dinheiro do que Beto, o que definitivamente não era o desejo do pai.
ShadowOnLine
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Abr 13, 2011 23:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Letras com Inglês
Andamento: formado

Re: [Valor Desconhecido em Uma Sentença] Qual Resolução Corr

Mensagempor DanielFerreira » Sex Ago 25, 2017 22:50

Isto. Resolução 1!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1683
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.