• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação do 2º grau

equação do 2º grau

Mensagempor rcpn » Seg Jul 10, 2017 21:45

Dado um terreno de 12m de largura por 30m de comprimento, para fazer uma calçada nos quatro lados do terreno com 135m² de piso, usando báskara, sem faltar e sem sobrar piso, qual deva ser a largura da calçada ?

Alguém poderia me ajudar neste problema ?
rcpn
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 08, 2014 10:46
Formação Escolar: ENSINO MÉDIO
Área/Curso: formação geral
Andamento: formado

Re: equação do 2º grau

Mensagempor petras » Seg Jul 24, 2017 01:14

Temos que 4x^2 +2.30.x+2.12.x=135 --> 4x^2+60x+24x=135--> 4x^2+84x-135=0
x= 1,5 ou -45/2(não serve)

Portanto 1,5 m
Anexos
Sem título4.jpg
Sem título4.jpg (8.77 KiB) Exibido 2333 vezes
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.