por willmorais » Sex Fev 12, 2016 20:26
A questão abaixo poderia ser resolvida de que maneira?
(UFES 2013) 16ª QUESTÃO - Quando uma certa loja vende um certo produto pelo preço unitário de 2000 reais, ela vende um total de 20 unidades do produto semanalmente. Sabe-se que, para cada diminuição de 40 reais no preço unitário do produto, a loja vende 2 unidades a mais do produto semanalmente. O preço unitário do produto, em reais, para que a receita da loja com a venda do produto seja máxima deve ser igual a:
A) 1100,00
B) 1300,00
C) 1400,00
D) 1200,00
E) 1500,00
Eu pensei assim:
Preço (x) -> Unidades (y)
2000 -> 20
1960 -> 22
1920 -> 24
Há um padrão. Seria uma função? x-40 implica em y+2.
O que a questão quer dizer com 'a receita com a venda do produto seja máxima'?
-
willmorais
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Fev 09, 2016 14:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Jornalismo
- Andamento: formado
por DriCaetano » Qui Jan 12, 2017 11:02
A receita (R) é o produto pelo preço unitário do produto e o número de produtos vendidos. Note que:
R=(2.000-40n) x (20+2n), em que n é número de vezem em que ocorre o desconto e consequente aumento de venda de unidades.
R=40.000+4.000n-800n-80n^2
R=40.000+3.200n-80n^2, que é uma função de 2º grau.
Para que a receita seja máxima temos:
n: b/2xa = 3200/2x(-80) = 20
Ou seja, devem ocorrer 20 reduções de preço. Então o preço unitário (p)será:
p=2.000-40 x 20=1.200
O preço é R$ 1.200,00
Fonte:
http://www.tutorbrasil.com.br/forum/vie ... hp?t=48950
-
DriCaetano
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jan 12, 2017 10:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Biblioteconomia
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão - Álgebra Elementar
por Oliver » Qua Fev 16, 2011 13:10
- 1 Respostas
- 2434 Exibições
- Última mensagem por DanielFerreira

Qui Fev 17, 2011 16:32
Álgebra Elementar
-
- [Questão Álgebra Elementar] UF-RJ
por yuri_simplelife » Seg Dez 14, 2015 21:23
- 2 Respostas
- 2512 Exibições
- Última mensagem por yuri_simplelife

Dom Dez 20, 2015 22:56
Álgebra Elementar
-
- Álgebra Elementar
por Abelardo » Seg Mar 14, 2011 18:09
- 1 Respostas
- 2189 Exibições
- Última mensagem por LuizAquino

Seg Mar 14, 2011 18:21
Álgebra Elementar
-
- Álgebra Elementar
por Thiago Josep » Sex Set 05, 2014 15:32
- 1 Respostas
- 2484 Exibições
- Última mensagem por DanielFerreira

Qui Jan 01, 2015 22:22
Álgebra Elementar
-
- Exercicio-Algebra elementar
por Renks » Seg Fev 14, 2011 20:38
- 3 Respostas
- 4542 Exibições
- Última mensagem por Renks

Ter Fev 15, 2011 13:55
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.