por RJ1572 » Dom Abr 04, 2010 13:22
1 - Carlos comprou um objeto e revendeu por R$171,00, ganhando nesta transação tantos por cento quanto o preço de compra. Qual o preço de compra?
A resposta segundo o gabarito é R$90,00 mas não consigo chegar a este resultado..Alguém pode me ajudar na resolução?
Obrigado.
-
RJ1572
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Fev 26, 2010 13:00
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por estudandoMat » Dom Abr 04, 2010 17:26
Valor = x
Venda = 171
tantos por cento quanto o preço de compra, ou seja, o valor da compra é igual o valor da % colocada no preço.
Monta uma formula:
x + x.

= 171
Resolvendo
x² + 100x - 17100 = 0

x =

x' =

= 90 (serve, pois 90 + 90% de 90 = 171)
x" =

= -190 (não serve)
-
estudandoMat
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Sex Abr 02, 2010 00:29
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema - Lógica
por RJ1572 » Seg Mar 01, 2010 13:08
- 1 Respostas
- 1569 Exibições
- Última mensagem por DanielFerreira

Qua Mar 03, 2010 08:28
Álgebra Elementar
-
- Problema lógica
por RJ1572 » Dom Abr 04, 2010 21:32
- 1 Respostas
- 1458 Exibições
- Última mensagem por estudandoMat

Seg Abr 05, 2010 00:05
Álgebra Elementar
-
- problema de lógica
por Gladimir » Ter Fev 04, 2014 17:18
- 1 Respostas
- 1373 Exibições
- Última mensagem por fff

Ter Fev 04, 2014 17:40
Lógica
-
- Problema de Logica + conjunto.
por Aninha Mendes » Seg Fev 13, 2012 17:43
- 1 Respostas
- 2497 Exibições
- Última mensagem por LuizAquino

Seg Fev 13, 2012 22:09
Conjuntos
-
- Problema usando a lógica
por virginia » Sáb Abr 27, 2013 11:52
- 1 Respostas
- 1562 Exibições
- Última mensagem por Jhennyfer

Sáb Abr 27, 2013 17:22
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.