• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação produto/quociente

inequação produto/quociente

Mensagempor vhcs29 » Qui Abr 01, 2010 12:32

Tenho dúvidas na resolução da seguinte inequação:

\frac{x+1}{\ x+2} > \frac{x+3}{\ x+4}

O que fiz foi, passa o 2º termo p/ o primeiro, ficaria:

\frac{x+1}{\ x+2} - \frac{x+3}{\ x+4} > 0

depois, mmc;

\frac{(x+1)(x+4) - (x+3)(x+2)}{\ (x+2)(x+4)} > 0

Depois eu não sei o que fazer. Sei que o resultado esperado é {-4<x<-2}. Se alguém puder me dar uma ajuda eu agradeço.
vhcs29
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 01, 2010 12:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: inequação produto/quociente

Mensagempor estudandoMat » Sex Abr 02, 2010 11:00

Olá.
Bom desenvolvendo a conta na parte de cima da fraçao:

{x}^{2}+5x+4-{x}^{2}-5x-6 = +4-6 = -2

ficando:
\frac{-2}{(x+2)(x+4)}>0

agora desenvolvendo cada parte da fração:
1°Resultado: -2 (é sempre negativo ,"no varal")
2° Resultado: x+2 => x = -2 (eq. do primeiro grau , Regra do CAMA, (primeiro) sinal Contrario de "a" (depois) Mesmo sinal de "a")
3° Resultado: x+4 => x = -4 (eq. do primeiro grau , Regra do CAMA)

"Varal para achar o resultado"
_______ -4 ____-2__________
- 2 - - - - - - - - - - - - - -
(x+2) - - - - - - - 0 + + + Sinal seguindo a regra do CAMA
(x+4) - - 0 + + + + + + + Mesma coisa
result - -0 + + + 0 - - - -

Ele que resultados onde o x>0 (Positivo) , que é entre -4 < x < -2
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: inequação produto/quociente

Mensagempor vhcs29 » Sex Abr 02, 2010 12:59

Valeu!
vhcs29
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 01, 2010 12:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?