• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema (Enem 2003)

Problema (Enem 2003)

Mensagempor Karina » Sáb Mar 27, 2010 13:57

Uma editora pretende despachar um lote de livros, agrupados em 100 pacotes de
20 cm X 20 cm X 30 cm. A transportadora acondicionará esses pacotes em caixas com formato de bloco retangular de
40 cm X 40 cm X 60 cm. A quantidade minima necessária de caixas para esse envio é:

a) 9
b) 11
c) 13
d) 15
e) 17


Alguem pode me ajudar? Eu não consigui interpretar direito
esse problema, não sei por onde começar
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Problema (Enem 2003)

Mensagempor Molina » Sáb Mar 27, 2010 17:20

Karina escreveu:Uma editora pretende despachar um lote de livros, agrupados em 100 pacotes de
20 cm X 20 cm X 30 cm. A transportadora acondicionará esses pacotes em caixas com formato de bloco retangular de
40 cm X 40 cm X 60 cm. A quantidade minima necessária de caixas para esse envio é:

a) 9
b) 11
c) 13
d) 15
e) 17


Alguem pode me ajudar? Eu não consigui interpretar direito
esse problema, não sei por onde começar

Boa tarde, Karina.

Vou tentar te ajudara interpretar o problema, e não resolvê-lo:

Temos aqui um problema envolvendo volumes. Chamaremos de V_p o volume total do pacote e de V_c o volume total da caixa. Tanto os pacotes, quanto a caixa são paralelepípedos. A fórmula para o volume deste sólido é dado por V=a*b*c, onde a, b e c são os lados do paralelepípedo.

Então comece fazendo isso, verificando o volume de um pacote e o volume de uma caixa. Agora que você tem a informação do volume do pacote, lembre-se que iremos despachar 100 pacotes. Então basta fazer 100*volumedeumpacote. Com isso você vai descobrir o V_p que é o volume total dos pacotes.

Como queremos saber quantas caixas são necessárias para armazenas esses pacotes, basta dividir os volumes: \frac{V_p}{V_c}.

Você chegará num valor 'não-inteiro'. Logo, o menor número de caixas necessárias é o menor inteiro maior do que este 'não-inteiro'.


Acho que com isso você consegue resolver.
Aguardo sua confirmação. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Problema (Enem 2003)

Mensagempor Karina » Sáb Mar 27, 2010 19:26

Agora entendi, cheguei ao resultado 12,5
arredondado da 13 e fecha com o gabarito
Obrigado pela ajuda.
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?