• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo com horas, minutos e segundos

Cálculo com horas, minutos e segundos

Mensagempor pkutwak » Ter Mar 02, 2010 18:13

Nunca usei, mas hoje quando fui resolver alguns exercícios de regra de três, deparei-me com uma conversão de horas.

Vi que não lembro mais nada sobre como somar ou subtrair horas minutos e segundos.

Por exemplo: 1h 45 minutos e 52 segundos + 2h 27 minutos e 18 segundos.

Alguém tem algum local onde posse ler sobre o assunto? Unica cois que lembrei, se passar de 60 minutos passar para outra unidade.

Obrigado.
pkutwak
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Fev 23, 2010 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado

Re: Cálculo com horas, minutos e segundos

Mensagempor Molina » Ter Mar 02, 2010 18:49

Boa tarde.

É como fazer uma soma normal. Só que quando os segundos chegar ao 60 você 'zera' ele, colocando apenas o valor que passou de 60 e adiciona 1 minuto nos algarismos dos minutos. Mesma coisa é feito com o algarismo do minuto se passar do 60, só que você adiciona 1h nos algarismos das horas.

Por exemplo:

Numa soma convencional, 15+17=32, pois:

15
17
32

Note que 5 + 7 não dá 2, e sim 12, só como passou de 10 eu coloco apenas o algarismo da unidade e adiciono 1 no algarismo da dezena. O mesmo procedimento é feito para soma de tempo, veja:

30min50seg+15min33seg=46min23seg, pois:

30min50seg
15min33seg
46min23seg

Perceba que 50 + 33 não dá 23, e sim 83, só que como passou de 60, eu uso apenas este valor que passou, no caso, 23. E adicionei 1 minuto na casa dos minutos.


Ajudou? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Cálculo com horas, minutos e segundos

Mensagempor pkutwak » Ter Mar 02, 2010 20:37

Está ótimo, agora entendi, a subtração creio eu, deve ser a mesma coisa.
pkutwak
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Fev 23, 2010 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: formado

Re: Cálculo com horas, minutos e segundos

Mensagempor Molina » Ter Mar 02, 2010 22:00

pkutwak escreveu:Está ótimo, agora entendi, a subtração creio eu, deve ser a mesma coisa.


Isso mesmo. Só que nos casos de 'pegar emprestado', você vai pegar 60 segundos ou 60 minutos. Por exemplo, essa subtração:

13min15seg
07min30seg
05min45seg

Note que eu 'peguei emprestado' 60 segundos do 13min, ficando com 75 segundos. Subtraindo 30, fico com 45 segundos. E não tenho mais 13 min e sim 12 min (já que eu emprestei 60 seg que é igual a 1 minuto).


Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?