• Anúncio Global
    Respostas
    Exibições
    Última mensagem

2 elevado a N = n elevado a 2 ???

2 elevado a N = n elevado a 2 ???

Mensagempor GMAT2010 » Qua Fev 03, 2010 13:54

Mais uma pergunta simples. Não sei se este é o grupo ideal, mas não encontrei um grupo específico para essas questões.

A pergunta é bem direta: para quantos números inteiros "n" a funcção abaixo é verdadeira?

{2}^{n}={n}^{2}

Para mim, o único número que se encaixa é n = 2. Mas a resposta diz que existem dois números inteiros que satisfazem a equação. Alguém sabe o outro?
GMAT2010
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 05, 2010 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng de Produção
Andamento: formado

Re: 2 elevado a N = n elevado a 2 ???

Mensagempor MarceloFantini » Qua Fev 03, 2010 15:48

Boa tarde GMAT.

Acredito que a melhor maneira de encontrar a resposta seja plotando os gráficos das duas funções e vendo as intersecções:

Imagem

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: 2 elevado a N = n elevado a 2 ???

Mensagempor Molina » Qua Fev 03, 2010 17:59

GMAT2010 escreveu:Para mim, o único número que se encaixa é n = 2. Mas a resposta diz que existem dois números inteiros que satisfazem a equação. Alguém sabe o outro?


4 é outro número que satisfaz a equação.

E pelo gráfico colocado por Fantini, ainda temos outro valor, só que não é inteiro.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.