• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver uma potência com expoente muito alto?

Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sex Jan 15, 2010 00:52

Olá

Gostaria de saber sobre notação científica ou como calcular potenciação com base em que o expoente é muito alto. Como no exercício abaixo:

Determine a relação entre a e b onde a e b sao números naturais que expressam os números de algarismos de
x = {4}^{12} . {5}^{20} e y = {4}^{14} . {5}^{18} , respectivamente.

Eu até conseguiria resolver essas potências, só que queria saber se existe algum método que dê para facilitar o cálculo quando o expoente é muito grande, como no caso acima. Se existir algum método, gostaria de um esclarecimento.

Desde já agradeço.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sex Jan 15, 2010 11:44

x = [4^12]*(5^20)

x = [(2²)^12]*(5^20)

x = [2^24]*(5^20)

x = [(2^4)*(2^20)]*(5^20)

x = (2^4)*[(2^20)*(5^20)]

x = (16)*(2*5)^20

x = 16*(10^20)

10^20 é um número com 21 algarismos ----> 16.000.000.000.000.000.000.000

Era isto que você queria?

Se for, faça de modo similar para y
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sáb Jan 16, 2010 00:29

Elcioschin escreveu:x = [4^12]*(5^20)

x = [(2²)^12]*(5^20)

x = [2^24]*(5^20)

x = [(2^4)*(2^20)]*(5^20)

x = (2^4)*[(2^20)*(5^20)]

x = (16)*(2*5)^20

x = 16*(10^20)

10^20 é um número com 21 algarismos ----> 16.000.000.000.000.000.000.000

Era isto que você queria?

Se for, faça de modo similar para y


Olá Elcioschin, obrigado pela resposta, era isso mesmo que querendo entender. Embora minha resposta deu diferente da sua. Veja como fiz as letras x e y:

x = (2²)^12 . 5^20

x = 2^24 . 5^20

x = 2^4 . 2^20 . 5^20

x = 2^4 . 2^20 . 5^20

x = 2^4 . (2*5)^20

x = 16 . 10^20

Assim temos:
16.100000000000000000000 = 1600000000000000000000 = 22 algarismos



y = 4^14 . 5^18

y = (2²)^14 . 5^18

y = 2^28 . 5^18

y = 2^10 . 2^18 . 5^18

y = 2^10 . (2 . 5)^18

y = 2^10 . 10^18

y = 1024 . 10^18

Assim temos:

1024 . 1000000000000000000 = 1024000000000000000000 = 22 algarismos

Portanto x = y

Gostaria de saber porque a minha resolução deu 22 algarismos e a sua 21 algarismos, gostaria muito de uma explicação.

Também gostaria de tirar mais essa dúvida:

Respondendo a letra y = 4^14 . 5^18 temos:

4^14 . 5^18
(2²)^14 . 5^18
2^28 . 5^18

Agora aqui ficou um pouco de dúvida.

Queria saber quais expoente deixar de 2^28 em 2^? . 2^? . 5^18 ?

pois 2^28 = 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2

Agora minha dúvida é de como aplicar a fórmula para que seja feita a distruibuição dos expoentes, ou seja, quais os expoentes que ficariam em 2^? . 2^? . 5^18

Será que pra colocar os expoentes, temos que tomar como base o expoente 18 do 5^18?

E ficaria assim: 2^10 . 2^18. 5^18.

A base pra formular os expoentes dos números anteriores seria o expoente 18 de 5^18?

Gostaria de tirar mais essa dúvida

obrigado.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sáb Jan 16, 2010 08:53

Você tem razão quanto à quantidade de algarismos do primeiro: são 22 algarismos: 16 + 20 zeros

Quanto ao segundo vc resolveu corretamente:

10^18 tem 18 zeros ----> Juntando com os 4 algarismos do 1024 são 22 algarismos:

1.024.000.000.000.000.000.000 coloquei os pontos para facilitar a leitura (veja que são 18 zeros)

Respondendo a sua dúvida:

Vc deve colocar o expoente do 2 IGUAL ao expoente do 5 para poder juntar as duas base e obter 10.

Vou dar dois exemplos:

a) Expoente do 2 maior do que exponte do 5 ----> (2^7)*(5^6) = (2¹)*(2^6)*(5^6) = 2*[(2^6)*(5^6)] = 2*10^6 = 2.000.000

b) Expoente do 2 menor do que exponte do 5 ----> (2^3)*(5^4) = (2^3)*(5^3)*(5^1) = 5*[(2^3)*(5^3)] = 5*10^3 = 5.000
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sáb Jan 16, 2010 20:09

Elcioschin

Obrigado pela explicação, realmente me ajudou muito.

Agora queria também saber se tem alguma forma mais prática de se resolver uma potência com expoente muito alto, como essa abaixo:

8^17

Pois fazer 8 dezessete vezes, é muito cansativo, sem falar que toma muito tempo.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sáb Jan 16, 2010 20:59

Para base 2 existe um modo aproximado: 2^10 = 1024 ~= 1000 = 10³ -----> 2^10 ~= 10³


8^17 = (2³)^17 = 2^51 = (2¹)*(2^50) = 2*(2^10)^5 ~= 2*(10³)^5 = 2*10^15 ~= 2.000.000.000.000.000
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sex Jan 22, 2010 00:20

Elcioschin escreveu:Para base 2 existe um modo aproximado: 2^10 = 1024 ~= 1000 = 10³ -----> 2^10 ~= 10³


8^17 = (2³)^17 = 2^51 = (2¹)*(2^50) = 2*(2^10)^5 ~= 2*(10³)^5 = 2*10^15 ~= 2.000.000.000.000.000


Olá Elcioschin, borigado mais uma vez pela explicação, embora não tenha entendido essa parte:

8^17 = (2³)^17 = 2^51 = (2¹)*(2^50) = 2*(2^10)^5 ~= 2*(10³)^5 = 2*10^15 ~= 2.000.000.000.000.000

o 2^51 entendi, pois multiplicou os expoentes 3 e 17 de (2³)^17, que dá 51

Daí também entendi 2^51 = (2¹)*(2^50)

agora gostaria de saber como encontrar essa outra parte: 2*(2^10)^5 ~= 2*(10³)^5

Obrigado.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sex Jan 22, 2010 08:42

Basta lembrar que:

2^10 ~= 10³ (aproximadamente igual, pois 2^10 = 1024 e 10^3 = 1000)

2^51 = (2^1)*(2^50) = 2*[2^(10*5)] = 2*(2^10)^5 = 2*(10^3)^5 = 2*10^15
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: