• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver uma potência com expoente muito alto?

Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sex Jan 15, 2010 00:52

Olá

Gostaria de saber sobre notação científica ou como calcular potenciação com base em que o expoente é muito alto. Como no exercício abaixo:

Determine a relação entre a e b onde a e b sao números naturais que expressam os números de algarismos de
x = {4}^{12} . {5}^{20} e y = {4}^{14} . {5}^{18} , respectivamente.

Eu até conseguiria resolver essas potências, só que queria saber se existe algum método que dê para facilitar o cálculo quando o expoente é muito grande, como no caso acima. Se existir algum método, gostaria de um esclarecimento.

Desde já agradeço.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sex Jan 15, 2010 11:44

x = [4^12]*(5^20)

x = [(2²)^12]*(5^20)

x = [2^24]*(5^20)

x = [(2^4)*(2^20)]*(5^20)

x = (2^4)*[(2^20)*(5^20)]

x = (16)*(2*5)^20

x = 16*(10^20)

10^20 é um número com 21 algarismos ----> 16.000.000.000.000.000.000.000

Era isto que você queria?

Se for, faça de modo similar para y
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sáb Jan 16, 2010 00:29

Elcioschin escreveu:x = [4^12]*(5^20)

x = [(2²)^12]*(5^20)

x = [2^24]*(5^20)

x = [(2^4)*(2^20)]*(5^20)

x = (2^4)*[(2^20)*(5^20)]

x = (16)*(2*5)^20

x = 16*(10^20)

10^20 é um número com 21 algarismos ----> 16.000.000.000.000.000.000.000

Era isto que você queria?

Se for, faça de modo similar para y


Olá Elcioschin, obrigado pela resposta, era isso mesmo que querendo entender. Embora minha resposta deu diferente da sua. Veja como fiz as letras x e y:

x = (2²)^12 . 5^20

x = 2^24 . 5^20

x = 2^4 . 2^20 . 5^20

x = 2^4 . 2^20 . 5^20

x = 2^4 . (2*5)^20

x = 16 . 10^20

Assim temos:
16.100000000000000000000 = 1600000000000000000000 = 22 algarismos



y = 4^14 . 5^18

y = (2²)^14 . 5^18

y = 2^28 . 5^18

y = 2^10 . 2^18 . 5^18

y = 2^10 . (2 . 5)^18

y = 2^10 . 10^18

y = 1024 . 10^18

Assim temos:

1024 . 1000000000000000000 = 1024000000000000000000 = 22 algarismos

Portanto x = y

Gostaria de saber porque a minha resolução deu 22 algarismos e a sua 21 algarismos, gostaria muito de uma explicação.

Também gostaria de tirar mais essa dúvida:

Respondendo a letra y = 4^14 . 5^18 temos:

4^14 . 5^18
(2²)^14 . 5^18
2^28 . 5^18

Agora aqui ficou um pouco de dúvida.

Queria saber quais expoente deixar de 2^28 em 2^? . 2^? . 5^18 ?

pois 2^28 = 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2

Agora minha dúvida é de como aplicar a fórmula para que seja feita a distruibuição dos expoentes, ou seja, quais os expoentes que ficariam em 2^? . 2^? . 5^18

Será que pra colocar os expoentes, temos que tomar como base o expoente 18 do 5^18?

E ficaria assim: 2^10 . 2^18. 5^18.

A base pra formular os expoentes dos números anteriores seria o expoente 18 de 5^18?

Gostaria de tirar mais essa dúvida

obrigado.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sáb Jan 16, 2010 08:53

Você tem razão quanto à quantidade de algarismos do primeiro: são 22 algarismos: 16 + 20 zeros

Quanto ao segundo vc resolveu corretamente:

10^18 tem 18 zeros ----> Juntando com os 4 algarismos do 1024 são 22 algarismos:

1.024.000.000.000.000.000.000 coloquei os pontos para facilitar a leitura (veja que são 18 zeros)

Respondendo a sua dúvida:

Vc deve colocar o expoente do 2 IGUAL ao expoente do 5 para poder juntar as duas base e obter 10.

Vou dar dois exemplos:

a) Expoente do 2 maior do que exponte do 5 ----> (2^7)*(5^6) = (2¹)*(2^6)*(5^6) = 2*[(2^6)*(5^6)] = 2*10^6 = 2.000.000

b) Expoente do 2 menor do que exponte do 5 ----> (2^3)*(5^4) = (2^3)*(5^3)*(5^1) = 5*[(2^3)*(5^3)] = 5*10^3 = 5.000
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sáb Jan 16, 2010 20:09

Elcioschin

Obrigado pela explicação, realmente me ajudou muito.

Agora queria também saber se tem alguma forma mais prática de se resolver uma potência com expoente muito alto, como essa abaixo:

8^17

Pois fazer 8 dezessete vezes, é muito cansativo, sem falar que toma muito tempo.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sáb Jan 16, 2010 20:59

Para base 2 existe um modo aproximado: 2^10 = 1024 ~= 1000 = 10³ -----> 2^10 ~= 10³


8^17 = (2³)^17 = 2^51 = (2¹)*(2^50) = 2*(2^10)^5 ~= 2*(10³)^5 = 2*10^15 ~= 2.000.000.000.000.000
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como resolver uma potência com expoente muito alto?

Mensagempor brumadense » Sex Jan 22, 2010 00:20

Elcioschin escreveu:Para base 2 existe um modo aproximado: 2^10 = 1024 ~= 1000 = 10³ -----> 2^10 ~= 10³


8^17 = (2³)^17 = 2^51 = (2¹)*(2^50) = 2*(2^10)^5 ~= 2*(10³)^5 = 2*10^15 ~= 2.000.000.000.000.000


Olá Elcioschin, borigado mais uma vez pela explicação, embora não tenha entendido essa parte:

8^17 = (2³)^17 = 2^51 = (2¹)*(2^50) = 2*(2^10)^5 ~= 2*(10³)^5 = 2*10^15 ~= 2.000.000.000.000.000

o 2^51 entendi, pois multiplicou os expoentes 3 e 17 de (2³)^17, que dá 51

Daí também entendi 2^51 = (2¹)*(2^50)

agora gostaria de saber como encontrar essa outra parte: 2*(2^10)^5 ~= 2*(10³)^5

Obrigado.
brumadense
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jan 15, 2010 00:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Como resolver uma potência com expoente muito alto?

Mensagempor Elcioschin » Sex Jan 22, 2010 08:42

Basta lembrar que:

2^10 ~= 10³ (aproximadamente igual, pois 2^10 = 1024 e 10^3 = 1000)

2^51 = (2^1)*(2^50) = 2*[2^(10*5)] = 2*(2^10)^5 = 2*(10^3)^5 = 2*10^15
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.