• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algum gênio consegue resolver isso? Álgebra elementar

Algum gênio consegue resolver isso? Álgebra elementar

Mensagempor BrenoNaval » Dom Abr 13, 2014 22:06

(MIT-HARVARD) Sendo .: X#Y=\frac{\sqrt{x^2+3xy+y^2-2x-2y+4}}{xy+4}

Ache o valor de ((...((2007#2006)#2005)#...)#1)

Essa questão é do livro praticando aritmética do lacerda,no entanto envolve mais álgebra e sequência lógica. Neste capítulo de operações internas é possível notar que em todos os exercícios o objetivo é encontrar uma sequência,no entanto esse exercício me tirou do sério,pois tentei de tudo e todos os possíveis produtos notáveis existentes nessa expressão.Estudo no curso apogeu um dos cursos com maiores índices de aprovação do brasil,com isso posso dizer do grau de dificuldade dessa questão ,pois nem meu professor de aritmética conseguiu resolver.Espero que alguém posso me ajudar,e caso isso venha acontecer,saiba amigo que você é um gênio ;)
BrenoNaval
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 30, 2014 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Algum gênio consegue resolver isso? Álgebra elementar

Mensagempor e8group » Seg Abr 14, 2014 01:33

Fixe X , e avaliaremos X \times Y , para certos valores de Y , conforme sua definição :

Y = 1

(1)

x \times 1 = \frac{\sqrt{x^2 + 3x + 1 + -2x -2 + 4 }}{x+4}  = \frac{\sqrt{x^2 +x +3 }}{x+4}

Y = 2

(2)

x \times 2 = \frac{\sqrt{x^2 + 6x + 4 + -2x -4 + 4 }}{2x+4}  = \frac{\sqrt{x^2 + 4x + 4 }}{2(x+2)} =  \frac{\sqrt{(x+2)^2 }}{2(x+2)}  =  1/2 se x > -2 .


Agora segue a seguinte observação :

A_1 \times A_2 \times \hdots \times  A_n  =  A_1 \times(A_2 \times \hdots \times  A_n) = (A_1 \times \hdots \times A_{n-1}) \times A_n . Para infinitos termos também vale, desde que a convergência fique bem claro ..

Ora ,

( \hdots (2007 \times 2006) \times \hdots \times 4 \times 3 \times 2 ) \times 1 = 

[tex]  ([ \hdots (2007 \times 2006) \times \hdots \times 4 \times 3 ]  \times 2 ) \times 1 .

Se admitimos que a expressão entre colchetes é convergente para um número maior que -2 , poderemos utilizar a relação (2) que diz que x \times  2  = 1/2 sempre que x > - 2 .


Daí , esta expressão ( \hdots (2007 \times 2006) \times \hdots \times 4 \times 3 \times 2 ) \times 1 se resume a (1/2) \times 1 ..Só fazer as contas utilizando a definição de X \times Y .

P.S.: O simbolo \times neste contexto não és multiplicação entre dois números .

Aqui em MG onde eu moro há um Apogeu , dizem que é bom mesmo ..
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D