• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - desafio

Dúvida - desafio

Mensagempor marinalcd » Qui Mar 06, 2014 16:37

Estou ajudando um colega e ele me apresentou este desafio que não conseguiu resolver:

Mostre que os anéis A = \{
\begin{pmatrix}
   a & 0  \\ 
   0 & b 
\end{pmatrix}  ; a,b \in Z \}

e
B = Z[\sqrt[]{2}] = \{ a + b\sqrt[]{2} ; a,b \in Z\}
não são isomorfos.

A dica é supor um homomorfismo f: A\rightarrow B e mostrar que
\begin{pmatrix}
   1 & 0  \\ 
   0 & 0 
\end{pmatrix} \in N (f) ou  
\begin{pmatrix}
   0 & 0  \\ 
   0 & 1 
\end{pmatrix} \in N (f).

Tentei provar que N(f) não é injetora, mas não estou conseguindo resolver este desafio.
Alguém pode me ajudar?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Dúvida - desafio

Mensagempor adauto martins » Sex Dez 05, 2014 17:25

A={\begin{pmatrix}
   a & 0  \\ 
   0 & b 
\end{pmatrix}=a\begin{pmatrix}
   1 & 0  \\ 
   0 & 0 
\end{pmatrix}
+b\begin{pmatrix}
   0 & 0  \\ 
   0 & 1 
\end{pmatrix},aeb\in Z}
vamos tomar f:A\rightarrow Bseja um homomorfismo,f(x)=y,ondex\in A, y\in B ...logo teremos
f(x+y)=f(x)+f(y) e f(x.y)=f(x).f(y)/ x,y \in A
f((\begin{pmatrix}
   a & 0  \\ 
   0 & b 
\end{pmatrix}
.\begin{pmatrix}
   c & 0  \\ 
   0 & d 
\end{pmatrix})=f(\begin{pmatrix}
   a.c & 0  \\ 
   0 & b.d 
\end{pmatrix})=
f(\begin{pmatrix}
   a.c & 0  \\ 
   0 & 0 
\end{pmatrix}).f(\begin{pmatrix}
   0 & 0 \\ 
   0 & c.d 
\end{pmatrix})=
(a.c+0\sqrt[]{2}).(0+c.d\sqrt[]{2})=a.b.c.d\sqrt[]{2}=p\sqrt[]{2},p\in Z\Rightarrow f(x.y)nao pertence a B...,logo A nao e isomorfo a B
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Dúvida - desafio

Mensagempor adauto martins » Sáb Dez 06, 2014 12:37

uma correçao ....f(
\begin{pmatrix}
   a & 0  \\ 
   0 & b 
\end{pmatrix}
.\begin{pmatrix}
   a & 0  \\ 
   0 & b 
\end{pmatrix})=
f(\begin{pmatrix}
   a.c & 0  \\ 
   0 & b.d 
\end{pmatrix})=a.c+d.b\sqrt[]{2}
\neq f(
\begin{pmatrix}   a.c & 0  \\ 
   0 & 0 
\end{pmatrix}).f(\begin{pmatrix}
   0 & 0  \\ 
   0 & b.d 
\end{pmatrix})=(a.c+0\sqrt[]{2}).(0+b.d\sqrt[]{2})=a.b.c.d\sqrt[]{2}=p\sqrt[]{2}logo nao satisfaz a propriedade multiplicativa de homomorfismos de A em B...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59