por thadeu » Qua Nov 18, 2009 16:32
Um aluno resolvendo uma questão de múltipla escolha chegou ao seguinte resultado
![\sqrt[4]{49+20\sqrt{6}} \sqrt[4]{49+20\sqrt{6}}](/latexrender/pictures/3dcec9563a50440657bb7d8570e1cce8.png)
, no entanto as opções estavam em números decimais e pedia-se a mais próxima do valor encontrado para resultado, e, assim sendo, procurou simplificar esse resultado, a fim de melhor estimar a resposta. Percebendo que o radicando da raiz de índice 4 é a quarta potência de uma soma de dois radicais simples, concluiu, com maior facilidade, que a opção para a resposta foi:
a) 3
b) 3,05
c) 3,15
d) 3,25
e) 3,35
-
thadeu
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Out 19, 2009 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Elcioschin » Qua Nov 18, 2009 18:01
Primeiramente vamos calcular V(49 + 20*V6) = V(49 + V2400) = Vx + Vy
A = 49, B = 2400 ----> x = [A + V(A² - B)]/2 ----> x = (49 + V(49² - 2400)]/2 ----> x = (49 + 1)/2 ----> x = 25
De modo similar ----> y = [A - V(A² - B)]/2 ----> y = (49 - V(49² - 2400)]/2 ----> y = (49 - 1)/2 ----> y = 24
Logo ----> V(49 + 20*V6) = V25 + V24 ----> V(49 + 20*V6) = 5 + V24
Temos agora que extrair a raiz quadrada des último valor (para obter a raiz quarta), usando o mesmo método:
V(5 + V24) ----> A = 5, B = 24 ----> x = (5 + 1)/2 ----> x = 3 ----> y = 2
Finalmente ----> V(49 + 20*V6) = V3 + V2 ----> V(49 + 20*V6) ~= 1,732 + 1,416 -----> V(49 + 20*V6) ~= 3,146 ----> C
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Radiciaçao
por guillcn » Ter Abr 12, 2011 17:17
- 2 Respostas
- 2209 Exibições
- Última mensagem por guillcn

Ter Abr 12, 2011 18:05
Álgebra Elementar
-
- Radiciação
por marianne86 » Sex Set 02, 2011 02:05
- 1 Respostas
- 1158 Exibições
- Última mensagem por LuizAquino

Sex Set 02, 2011 11:16
Álgebra Elementar
-
- Radiciação
por TAE » Qua Mai 16, 2012 18:03
- 8 Respostas
- 4255 Exibições
- Última mensagem por DanielFerreira

Ter Mai 22, 2012 23:00
Álgebra Elementar
-
- Radiciacão
por anneliesero » Seg Jul 22, 2013 12:09
- 1 Respostas
- 1072 Exibições
- Última mensagem por temujin

Seg Jul 22, 2013 15:01
Álgebra Elementar
-
- Radiciação
por misaelbarreto » Sáb Out 24, 2015 21:23
- 1 Respostas
- 1222 Exibições
- Última mensagem por Cleyson007

Seg Out 26, 2015 17:11
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.