• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação

Radiciação

Mensagempor thadeu » Qua Nov 18, 2009 16:32

Um aluno resolvendo uma questão de múltipla escolha chegou ao seguinte resultado \sqrt[4]{49+20\sqrt{6}}, no entanto as opções estavam em números decimais e pedia-se a mais próxima do valor encontrado para resultado, e, assim sendo, procurou simplificar esse resultado, a fim de melhor estimar a resposta. Percebendo que o radicando da raiz de índice 4 é a quarta potência de uma soma de dois radicais simples, concluiu, com maior facilidade, que a opção para a resposta foi:

a) 3
b) 3,05
c) 3,15
d) 3,25
e) 3,35
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Radiciação

Mensagempor Elcioschin » Qua Nov 18, 2009 18:01

Primeiramente vamos calcular V(49 + 20*V6) = V(49 + V2400) = Vx + Vy

A = 49, B = 2400 ----> x = [A + V(A² - B)]/2 ----> x = (49 + V(49² - 2400)]/2 ----> x = (49 + 1)/2 ----> x = 25

De modo similar ----> y = [A - V(A² - B)]/2 ----> y = (49 - V(49² - 2400)]/2 ----> y = (49 - 1)/2 ----> y = 24

Logo ----> V(49 + 20*V6) = V25 + V24 ----> V(49 + 20*V6) = 5 + V24

Temos agora que extrair a raiz quadrada des último valor (para obter a raiz quarta), usando o mesmo método:

V(5 + V24) ----> A = 5, B = 24 ----> x = (5 + 1)/2 ----> x = 3 ----> y = 2

Finalmente ----> V(49 + 20*V6) = V3 + V2 ----> V(49 + 20*V6) ~= 1,732 + 1,416 -----> V(49 + 20*V6) ~= 3,146 ----> C
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}