por thadeu » Qua Nov 18, 2009 16:32
Um aluno resolvendo uma questão de múltipla escolha chegou ao seguinte resultado
![\sqrt[4]{49+20\sqrt{6}} \sqrt[4]{49+20\sqrt{6}}](/latexrender/pictures/3dcec9563a50440657bb7d8570e1cce8.png)
, no entanto as opções estavam em números decimais e pedia-se a mais próxima do valor encontrado para resultado, e, assim sendo, procurou simplificar esse resultado, a fim de melhor estimar a resposta. Percebendo que o radicando da raiz de índice 4 é a quarta potência de uma soma de dois radicais simples, concluiu, com maior facilidade, que a opção para a resposta foi:
a) 3
b) 3,05
c) 3,15
d) 3,25
e) 3,35
-
thadeu
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Out 19, 2009 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Elcioschin » Qua Nov 18, 2009 18:01
Primeiramente vamos calcular V(49 + 20*V6) = V(49 + V2400) = Vx + Vy
A = 49, B = 2400 ----> x = [A + V(A² - B)]/2 ----> x = (49 + V(49² - 2400)]/2 ----> x = (49 + 1)/2 ----> x = 25
De modo similar ----> y = [A - V(A² - B)]/2 ----> y = (49 - V(49² - 2400)]/2 ----> y = (49 - 1)/2 ----> y = 24
Logo ----> V(49 + 20*V6) = V25 + V24 ----> V(49 + 20*V6) = 5 + V24
Temos agora que extrair a raiz quadrada des último valor (para obter a raiz quarta), usando o mesmo método:
V(5 + V24) ----> A = 5, B = 24 ----> x = (5 + 1)/2 ----> x = 3 ----> y = 2
Finalmente ----> V(49 + 20*V6) = V3 + V2 ----> V(49 + 20*V6) ~= 1,732 + 1,416 -----> V(49 + 20*V6) ~= 3,146 ----> C
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Radiciaçao
por guillcn » Ter Abr 12, 2011 17:17
- 2 Respostas
- 2153 Exibições
- Última mensagem por guillcn

Ter Abr 12, 2011 18:05
Álgebra Elementar
-
- Radiciação
por marianne86 » Sex Set 02, 2011 02:05
- 1 Respostas
- 1096 Exibições
- Última mensagem por LuizAquino

Sex Set 02, 2011 11:16
Álgebra Elementar
-
- Radiciação
por TAE » Qua Mai 16, 2012 18:03
- 8 Respostas
- 4068 Exibições
- Última mensagem por DanielFerreira

Ter Mai 22, 2012 23:00
Álgebra Elementar
-
- Radiciacão
por anneliesero » Seg Jul 22, 2013 12:09
- 1 Respostas
- 1022 Exibições
- Última mensagem por temujin

Seg Jul 22, 2013 15:01
Álgebra Elementar
-
- Radiciação
por misaelbarreto » Sáb Out 24, 2015 21:23
- 1 Respostas
- 1161 Exibições
- Última mensagem por Cleyson007

Seg Out 26, 2015 17:11
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.