• Anúncio Global
    Respostas
    Exibições
    Última mensagem

frações algebricas

frações algebricas

Mensagempor tamirosa » Qui Out 29, 2009 20:11

x² - 9
__________

x² - 6x +9

simplificar.

já tentei algumas vezes, mas não me lembro. acho qe da forma qe eu fiz ta certo.
colocando o x² em evidencia, mais queria ter certeza.
tamirosa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 29, 2009 20:03
Formação Escolar: ENSINO MÉDIO
Área/Curso: regular
Andamento: formado

Re: frações algebricas

Mensagempor Molina » Sex Out 30, 2009 11:37

Bom dia.

Você precisa fazer alguma coisa com a parte de cima e com a parte de baixo da fração para que seja possivel cancelar algum termo.

Vejamos o que temos:

x^2 - 9 é a diferença de dois quadrados. Para isso tiramos a raiz quadrada do primeiro termo, ficando com x e a raiz quadrada do segundo termo, ficando com 3, e escrevemos o seguinte:

x^2 - 9=(x+3)(x-3)

Note que se você fizer a distributiva do lado direito vai conseguir uma expressão igual do lado esquerdo.

Vamos ao outro termo:

x^2 - 6x +9 é um trinômio do quadrado perfeito, pois se eu tirar a raiz quadrada do primeiro e do último termo e multiplicar por 2 é igual ao termo do meio. Vejamos: Raiz quadrada do primeiro termo é x. Raiz quadrada do último termo é 3. Note que se multiplicarmos 3*x*2=6x (que é o termo do meio). Então podemos escrever:

x^2 - 6x +9=(x-3)^2

Observe que dentro do parênteses o sinal ficou negativo devido ao 6x ser negativo do lado esquerdo.

Feito isso agora vamos ver o que podemos simplificar:

\frac{x^2 - 9}{x^2 - 6x +9}=\frac{(x+3)(x-3)}{(x-3)^2}=\frac{x+3}{x-3}

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}