• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Álgebra Pura]

[Álgebra Pura]

Mensagempor raimundoocjr » Qui Mai 30, 2013 22:59

Calcular \frac{-3x}{(3+3x^2)^2}=\frac{9}{16}.
raimundoocjr
 

Re: [Álgebra Pura]

Mensagempor e8group » Sex Mai 31, 2013 11:27

Esta equação não admite solução real .De fato : Reescrevemos -3x/(3+3x^2)^2 como -x/[3(x^2+1)^2] e considerando este resultado uma função g(x) .Observando que o denominador é sempre positivo para quaisquer x real ,então comparando a igualdade dada (equação) é fácil ver que se g(x) =9/16 admite um número finito de soluções reais ,então obrigatoriamente tais soluções são < 0 ,mas isto contradiz o teorema do valor intermediário (TVI) , pois g é contínua em (-\infty,0) e \begin{cases} \lim_{x\to -\infty} g(x) <9/16\\  \lim_{x\to 0^-} g(x) < 9/16\end{cases} o que implica que não existe c em quaisquer intervalos [M,N] \subset (-\infty,0)(ou [N,M] \subset (-\infty,0) ) tais que g(c) = 0 .Logo pelo (TVI), concluímos que a suposição de g(x) =9/16 admite um número finito de soluções reais é falsa ,i.e,a equação não admite solução real .

Outra forma que achei interessante :

Usando que necessariamente x< 0 ,fazendo a substituição trigonométrica x = - tan(\gamma) para (*) tan(\gamma) > 0 ,temos :

\frac{ tan(\gamma)}{3(1+tan^2(\gamma))^2}  = \frac{tan(\gamma)}{3sec^4 \gamma} = \frac{9}{16}  \implies   sin \gamma cos^3 \gamma = \frac{27}{16} .Esta igualdade é uma contradição .Pois 27/16 > 1 e as funções seno e cosseno são limitadas , pela hipótese(*) tem-se sin(\gamma)cos^3(\gamma) <1 .Absurdo ! .

A primeira solução acho que ela é aceita ,a segunda talvez ela seja .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Álgebra Pura]

Mensagempor raimundoocjr » Sex Mai 31, 2013 15:34

Entendi. Valeu!
raimundoocjr
 


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}