• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação(UNIFOR)-A expressão

Simplificação(UNIFOR)-A expressão

Mensagempor wgf » Seg Mai 27, 2013 20:26

\frac{{2x}^{2}+x+3}{{x}^{2}+2x+1} - \frac{{x}+{2}}{x+1}, com x\neq1, é  equivalente a:

não consigo chegar ao resultado (x-1/x+2)^2
wgf
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mai 15, 2013 18:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Simplificação(UNIFOR)-A expressão

Mensagempor Rafael16 » Ter Mai 28, 2013 14:14

\frac{2x^2 + x + 3}{x^2 + 2x + 1} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3}{(x+1)^2} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3 - (x+1)(x+2)}{(x+1)^2}


\frac{2x^2 + x + 3 - (x^2 + 3x + 2)}{(x+1)^2}


\frac{x^2 - 2x + 1}{(x+1)^2}


\frac{(x-1)^2}{(x+2)^2}


(\frac{x-1}{x+2})^2
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Simplificação(UNIFOR)-A expressão

Mensagempor wgf » Ter Mai 28, 2013 21:04

Obrigado Rafael16.
wgf
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mai 15, 2013 18:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Simplificação(UNIFOR)-A expressão

Mensagempor Denilson Colque » Ter Mai 01, 2018 18:17

Como o denominador da segunda fração passa a multiplicar?

\frac{2x^2 + x + 3}{(x+1)^2} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3 - (x+1)(x+2)}{(x+1)^2}
Denilson Colque
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 01, 2018 18:11
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando

Re: Simplificação(UNIFOR)-A expressão

Mensagempor DanielFerreira » Ter Mai 01, 2018 22:54

Olá Denilson!

Denilson Colque escreveu:Como o denominador da segunda fração passa a multiplicar?

\frac{2x^2 + x + 3}{(x+1)^2} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3 - (x+1)(x+2)}{(x+1)^2}


Note que o denominador da segunda fração é um divisor do denominador da primeira fração. Desse modo, o MMC será \mathbf{(x + 1)^2}.

Veja:

\\ \mathsf{\frac{2x^2 + x + 3}{(x + 1)^2} - \frac{x + 2}{x + 1} = \frac{2x^2 + x + 3}{(x + 1)^2/1} - \frac{x + 2}{(x + 1)/(x + 1)}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{1 \cdot (2x^2 + x + 3) - (x + 1) \cdot (x + 2)}{(x + 1)^2}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{2x^2 + x + 3 - (x^2 + 3x + 2)}{(x + 1)^2}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{x^2 - 2x + 1}{(x + 1)^2}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{(x - 1)^2}{(x + 1)^2}} \\\\\\ \mathsf{\frac{2x^2 + x + 3}{(x + 1)^2} - \frac{x + 2}{x + 1} = \boxed{\mathsf{\left ( \frac{x - 1}{x + 1} \right )^2}}}}


Notem que há um erro no denominador da fração apresentada como gabarito! Na verdade, o denominador é {\mathsf{(x + 1)^2} e não \mathsf{(x + 2)^2}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1683
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}