• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação(UNIFOR)-A expressão

Simplificação(UNIFOR)-A expressão

Mensagempor wgf » Seg Mai 27, 2013 20:26

\frac{{2x}^{2}+x+3}{{x}^{2}+2x+1} - \frac{{x}+{2}}{x+1}, com x\neq1, é  equivalente a:

não consigo chegar ao resultado (x-1/x+2)^2
wgf
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mai 15, 2013 18:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Simplificação(UNIFOR)-A expressão

Mensagempor Rafael16 » Ter Mai 28, 2013 14:14

\frac{2x^2 + x + 3}{x^2 + 2x + 1} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3}{(x+1)^2} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3 - (x+1)(x+2)}{(x+1)^2}


\frac{2x^2 + x + 3 - (x^2 + 3x + 2)}{(x+1)^2}


\frac{x^2 - 2x + 1}{(x+1)^2}


\frac{(x-1)^2}{(x+2)^2}


(\frac{x-1}{x+2})^2
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Simplificação(UNIFOR)-A expressão

Mensagempor wgf » Ter Mai 28, 2013 21:04

Obrigado Rafael16.
wgf
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mai 15, 2013 18:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Simplificação(UNIFOR)-A expressão

Mensagempor Denilson Colque » Ter Mai 01, 2018 18:17

Como o denominador da segunda fração passa a multiplicar?

\frac{2x^2 + x + 3}{(x+1)^2} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3 - (x+1)(x+2)}{(x+1)^2}
Denilson Colque
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 01, 2018 18:11
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando

Re: Simplificação(UNIFOR)-A expressão

Mensagempor DanielFerreira » Ter Mai 01, 2018 22:54

Olá Denilson!

Denilson Colque escreveu:Como o denominador da segunda fração passa a multiplicar?

\frac{2x^2 + x + 3}{(x+1)^2} - \frac{x+2}{x+1}


\frac{2x^2 + x + 3 - (x+1)(x+2)}{(x+1)^2}


Note que o denominador da segunda fração é um divisor do denominador da primeira fração. Desse modo, o MMC será \mathbf{(x + 1)^2}.

Veja:

\\ \mathsf{\frac{2x^2 + x + 3}{(x + 1)^2} - \frac{x + 2}{x + 1} = \frac{2x^2 + x + 3}{(x + 1)^2/1} - \frac{x + 2}{(x + 1)/(x + 1)}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{1 \cdot (2x^2 + x + 3) - (x + 1) \cdot (x + 2)}{(x + 1)^2}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{2x^2 + x + 3 - (x^2 + 3x + 2)}{(x + 1)^2}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{x^2 - 2x + 1}{(x + 1)^2}} \\\\\\ \mathsf{\quad \quad \quad \qquad \qquad \qquad = \frac{(x - 1)^2}{(x + 1)^2}} \\\\\\ \mathsf{\frac{2x^2 + x + 3}{(x + 1)^2} - \frac{x + 2}{x + 1} = \boxed{\mathsf{\left ( \frac{x - 1}{x + 1} \right )^2}}}}


Notem que há um erro no denominador da fração apresentada como gabarito! Na verdade, o denominador é {\mathsf{(x + 1)^2} e não \mathsf{(x + 2)^2}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.