• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] Apics

[Fatoração] Apics

Mensagempor chronoss » Qua Abr 24, 2013 16:19

Dados os números x , y , z tais que : x + y + z = 1 , x² + y² + x² = 2 , x³ + y³ + z³ = 3 . Calcule : x? + y? + z?.


Resposta : 25/6

Obs: Tentei diversas vezes sem sucesso
chronoss
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Qui Abr 18, 2013 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Fatoração] Apics

Mensagempor young_jedi » Sex Abr 26, 2013 19:37

(x+y+z)^2=1

x^2+y^2+z^2+2xy+2xz+2zy=1

substituindo a segunda equação

2+2(xy+xz+yz)=1

xy+xz+yz=-1/2

temos ainda que

(x+y+z)^3=1

x^3+y^3+z^3+3x^2y+3x^2z+3y^2x+3y^2z+3z^2x+3z^2y+6xyz=1

3+3(x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz)=1

x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz=\frac{-2}{3}

(x+y+z)(x^2+y^2+z^2)-x^3-y^3-z^3+2xyz=\frac{-2}{3}

1.2-3+2xyz=-\frac{2}{3}

xyz=\frac{1}{6}

portanto temos que

(xy+xz+yz)(x^2+y^2+z^2)=-\frac{1}{2}.2

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y+x^2yz+y^2xz+z^2xy=-1

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y+(xyz)(x+y+z)=-1

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y+\frac{1}{6}.1=-1

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y=-\frac{7}{6}

mais nos sabemos que

(x+y+z)(x^3+y^3+z^3)=1.3

x^4+y^4+z^4+x^3y+x^3z+y^3x+y^3z+z^3x+z^3y=3

substituindo a outra relação encontrada temos

x^4+y^4+z^4-\frac{7}{6}=3

x^4+y^4+z^4=\frac{7}{6}+3


x^4+y^4+z^4=\frac{25}{6}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}