por raimundoocjr » Ter Abr 23, 2013 20:35
01. Considerando a expressão (o índice
n assume sempre valores pares não negativos):
![f(x)=\frac{1}{\sqrt[n]{a{x}^{2}+bx+c}} f(x)=\frac{1}{\sqrt[n]{a{x}^{2}+bx+c}}](/latexrender/pictures/252de18b69e37651666123dacdb44b92.png)
. Comente sobre o domínio do que foi mostrado.
Comecei pela seguinte ideia:
![\sqrt[n]{a{x}^{2}+bx+c}\neq0 \sqrt[n]{a{x}^{2}+bx+c}\neq0](/latexrender/pictures/74e1801764d9f7d21be7f817485c072f.png)
. Depois, como o índice é par o radicando deve ser obrigatoriamente não negativo (e nesse caso também diferente de 0).
-
raimundoocjr
-
por ant_dii » Qua Abr 24, 2013 14:32
raimundoocjr escreveu:01. Considerando a expressão (o índice
n assume sempre valores pares não negativos):
![f(x)=\frac{1}{\sqrt[n]{a{x}^{2}+bx+c}} f(x)=\frac{1}{\sqrt[n]{a{x}^{2}+bx+c}}](/latexrender/pictures/252de18b69e37651666123dacdb44b92.png)
. Comente sobre o domínio do que foi mostrado.
Comecei pela seguinte ideia:
![\sqrt[n]{a{x}^{2}+bx+c}\neq0 \sqrt[n]{a{x}^{2}+bx+c}\neq0](/latexrender/pictures/74e1801764d9f7d21be7f817485c072f.png)
. Depois, como o índice é par o radicando deve ser obrigatoriamente não negativo (e nesse caso também diferente de 0).
De fato, o que fez esta certo, mas seria melhor ainda se tivesse colocado

. Isso já resolve toda a questão. Análise o porque.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida teórica.
por neilendrigo » Sex Mai 16, 2008 23:55
- 2 Respostas
- 2689 Exibições
- Última mensagem por neilendrigo

Sáb Mai 17, 2008 13:16
Geometria Plana
-
- [limites] - dúvida teórica
por natanaelskt » Qua Jul 16, 2014 02:04
- 2 Respostas
- 1783 Exibições
- Última mensagem por natanaelskt

Qui Jul 17, 2014 01:27
Cálculo: Limites, Derivadas e Integrais
-
- Duvida teorica (funçao exponencial)
por Fabricio dalla » Qui Abr 07, 2011 01:56
- 2 Respostas
- 1567 Exibições
- Última mensagem por MarceloFantini

Qui Abr 07, 2011 19:06
Funções
-
- [integração por partes] Dúvida teórica
por natanaelskt » Qui Jul 17, 2014 03:00
- 1 Respostas
- 1492 Exibições
- Última mensagem por e8group

Qui Jul 17, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- [Estruturas Algébricas] Subconjuntos - Dúvida Teórica
por Pessoa Estranha » Seg Mar 10, 2014 19:51
- 1 Respostas
- 1484 Exibições
- Última mensagem por adauto martins

Sáb Dez 06, 2014 13:10
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.