• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raiz dentro de raiz

Raiz dentro de raiz

Mensagempor zeramalho2004 » Seg Set 21, 2009 14:45

Olá pessoal, gostaria de saber como resolver estas questoes de vestibular de um jeito menos complicado, obrigado

Imagem

Imagem
zeramalho2004
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Nov 02, 2008 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Raiz dentro de raiz

Mensagempor Elcioschin » Seg Out 05, 2009 21:11

Fórmula geral:

V(A + - VB) = Vx + - Vy ----> x = [A + V(A² - B)]/2 ----> y = [A - V(A² - B)]/2

Esta transformação só é interessante se A² - B for um quadrado perfeito.

No teu primeiro caso ----> A = 5, B = 24 ----> A² - B = 5² - 24 ----> A² - B = 1 ----> Quadrado perfeito ----> OK ----> V(A² - B) = 1

x = [5 + 1]/2 ----> x = 3
y = [5 - 1]/2 ----> y = 2

V(5 + V24) = V3 + V2

No segundo caso, leve o 4 para dentro do segundo radicando:

V(14 + 4*V10) = V(14 - V160) ----> A = 14 ----> B = 160 ----> A² - B = 14² - 160 ----> A² - B = 36 ----> Quadrado perfeito ----> V(A² - B) = 6

x = (14 + 6)/2 ----> x = 10
y = (14 - 6)/2 ---> y = 4


V(14 + 4*V10) = V10 - V4 = V10 - 2

O outro dará ----> V(14 - 4*V10) = V10 - 2

A soma final dará ----> (V10 + 2) - (V10 - 2) = 4
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Raiz dentro de raiz

Mensagempor Andre+ » Ter Mar 23, 2010 21:05

Se f(x)=\sqrt{6+2x} então f(\sqrt{5}).f(\sqrt{-5})
Andre+
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mar 23, 2010 20:44
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tecnico em meio ambiente
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59