por flavio2010 » Dom Jul 11, 2010 10:03
Seja p(x)=x^2+px+p uma função real na variável real.Os valores de p para os quais f(x)=0 possue raiz dupla positiva são:
a) 0<p<4
b) p=4
c) p=0
d) f(x)=0 não pode ter raiz dupla positiva
e) n.r.a
-
flavio2010
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Jun 10, 2010 22:27
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Douglasm » Dom Jul 11, 2010 10:44
Primeiramente, para que haja raiz dupla, o discriminante deve ser nulo:

Para p = 0, nós temos o próprio zero como raiz dupla, que não é o que nós queremos, pois a raiz deve ser dupla e positiva. Para p = 4, nós teremos -2 como raiz dupla, o que também não nos serve. Consequentemente a resposta é letra D.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Tom » Dom Jul 11, 2010 16:00
Em concordância com o que ja foi explanado, segue abaixo outras resoluções:
Resolução 1:
Seja

um polinômio tal que

. Seja

a raiz dupla de

, então a primeira derivada de

no ponto

é nula, isto é:

, assim

é a raiz dupla.
Além disso Se

é raiz, então:

, isto é,

e como

e decore em

.
Resolução 2:Seja

um polinômio ta que

. Seja

a raiz dupla de

, pelas relações de Girard, temos:

e

e dessas obtemos:

e como
Resolução 3:Se

adimite raiz dupla e é um polinômio do segundo grau, então

pode ser reduzido a um quadrado perfeito de forma canônica:

, tal que

é sua raiz. Assim,

. Fazendo a identidade polinomial entre o polinômio supracitado e o fornecido pelo enunciado, obtemos:

e

e dessas relalçõs surge:

e como

Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Condição de Existência
por gustavowelp » Sáb Jun 26, 2010 11:56
- 5 Respostas
- 5299 Exibições
- Última mensagem por Molina

Sáb Jun 26, 2010 20:49
Logaritmos
-
- Provar a existência de subespaços
por valeuleo » Seg Set 19, 2011 10:52
- 2 Respostas
- 1675 Exibições
- Última mensagem por valeuleo

Seg Set 19, 2011 12:19
Álgebra Linear
-
- Demonstração de existencia de subespaço
por leandro_aur » Dom Mar 04, 2012 19:29
- 0 Respostas
- 1280 Exibições
- Última mensagem por leandro_aur

Dom Mar 04, 2012 19:29
Introdução à Álgebra Linear
-
- [Limite] Conceito de Existência
por eli83 » Qua Out 10, 2012 10:33
- 4 Respostas
- 2404 Exibições
- Última mensagem por young_jedi

Qui Out 11, 2012 17:25
Cálculo: Limites, Derivadas e Integrais
-
- Teorema de Existencia e Unicidade
por Crist » Sex Mar 15, 2013 21:07
- 0 Respostas
- 1235 Exibições
- Última mensagem por Crist

Sex Mar 15, 2013 21:07
Equações Diferenciais Ordinárias e Aplicações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.