• Anúncio Global
    Respostas
    Exibições
    Última mensagem

divisores

divisores

Mensagempor von grap » Qua Jun 30, 2010 22:12

me ajudem nessa: o nº {6}^{19}.{3}^{x} possui 600 divisores naturais.O valor de x é :
a) 1 b) 29 c) 10 d) 15
von grap
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Dez 07, 2009 15:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: divisores

Mensagempor Tom » Sex Jul 02, 2010 00:51

Decompondo o número em fatores primos, temos: n=2^19.3^{x+19} e da fórmula para o número de divisores naturais, temos:

d=(19+1).(x+19+1)=600, onde d respresenta o número de divisores.

Assim, 20(20+x)=600, isto é, 20+x=30 e , finalmente, x=10 - Letra C -
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: divisores

Mensagempor von grap » Sáb Jul 03, 2010 09:28

amigo, eu não entendi a sua decomposição.Será que pode me explicar como achou o nº 9 na decomposição?

valeu...
von grap
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Dez 07, 2009 15:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: divisores

Mensagempor von grap » Sáb Jul 03, 2010 09:35

Tom escreveu:Decompondo o número em fatores primos, temos: n=2^19.3^{x+19} e da fórmula para o número de divisores naturais, temos:

d=(19+1).(x+19+1)=600, onde d respresenta o número de divisores.

Assim, 20(20+x)=600, isto é, 20+x=30 e , finalmente, x=10 - Letra C -



Eu não entendi a sua decomposição.Pode me explicar como achou o nº 9? valeu.
von grap
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Dez 07, 2009 15:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: divisores

Mensagempor Tom » Sáb Jul 03, 2010 20:04

Desculpe, foi um erro no código latex. Já consertei.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: divisores

Mensagempor Tom » Sáb Jul 03, 2010 20:05

Veja:

Decompondo o número em fatores primos, temos: n=2^{19}.3^{x+19} e da fórmula para o número de divisores naturais, temos:

d=(19+1).(x+19+1)=600, onde d respresenta o número de divisores.

Assim, 20(20+x)=600, isto é, 20+x=30 e , finalmente, x=10 - Letra C -


Não era 9, era pra ser o 19 do expoente.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.