• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Algébrica de raiz dupla

Equação Algébrica de raiz dupla

Mensagempor Carolziiinhaaah » Sáb Jun 19, 2010 01:16

Determine o valor real de a para que a equação x^4 + x + a = 0 tenha raíz dupla.

gabarito:
\alpha = \frac{3\sqrt[3]{2}}{8}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Algébrica de raiz dupla

Mensagempor Douglasm » Dom Jun 20, 2010 09:39

Para resolver esta eu tive que derivar a equação, caso haja dúvida em relação a isso, é interessante dar uma olhada nessa matéria.

Sabemos que se P(x) possui uma raiz com multiplicidade n, P'(x) possui a mesma raiz com multiplicidade n-1. Deste modo, a derivada dessa equação terá a raiz dupla com multiplicidade 1:

P(x) = x^4 + x + \alpha = 0 \; \therefore

P'(x) = 4x^3 + 1 = 0 \; \therefore

x = \frac{-1}{2^{\frac{2}{3}}}

Como as outras raízes são complexas, o polinômio original tem um termo "x" e alfa é real, elas não nos interessam. Agora é só substituir essa raiz:

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{-1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{4 - 1}{2^{\frac{8}{3}}} = \frac{3}{2^{\frac{8}{3}}} = \alpha \; \therefore

\frac{3}{2^{\frac{8}{3}}} \; . \; \frac{2^{\frac{16}{3}}}{2^{\frac{16}{3}}} = \alpha \; \therefore

\alpha = \frac{3\sqrt[3]{2}}{8}

E está ai a resposta. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.