• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Algébrica de raiz dupla

Equação Algébrica de raiz dupla

Mensagempor Carolziiinhaaah » Sáb Jun 19, 2010 01:16

Determine o valor real de a para que a equação x^4 + x + a = 0 tenha raíz dupla.

gabarito:
\alpha = \frac{3\sqrt[3]{2}}{8}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Algébrica de raiz dupla

Mensagempor Douglasm » Dom Jun 20, 2010 09:39

Para resolver esta eu tive que derivar a equação, caso haja dúvida em relação a isso, é interessante dar uma olhada nessa matéria.

Sabemos que se P(x) possui uma raiz com multiplicidade n, P'(x) possui a mesma raiz com multiplicidade n-1. Deste modo, a derivada dessa equação terá a raiz dupla com multiplicidade 1:

P(x) = x^4 + x + \alpha = 0 \; \therefore

P'(x) = 4x^3 + 1 = 0 \; \therefore

x = \frac{-1}{2^{\frac{2}{3}}}

Como as outras raízes são complexas, o polinômio original tem um termo "x" e alfa é real, elas não nos interessam. Agora é só substituir essa raiz:

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{-1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{4 - 1}{2^{\frac{8}{3}}} = \frac{3}{2^{\frac{8}{3}}} = \alpha \; \therefore

\frac{3}{2^{\frac{8}{3}}} \; . \; \frac{2^{\frac{16}{3}}}{2^{\frac{16}{3}}} = \alpha \; \therefore

\alpha = \frac{3\sqrt[3]{2}}{8}

E está ai a resposta. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}