por RJ1572 » Sex Mai 21, 2010 11:15
Tês amigas decidiram organizar um desafio para definir qual delas era a melhor nadadora. Foram realizadas n competições, sendo atribuidos, em cada uma delas, a, b e c pontos para, respctivamente, a primeira, a segunda e a terceira colocação, não havendo possibilidade de empate em qualquer competição. Ao final do desafio, a vencedora acumulou 46 pontos, a que ficou em segundo lugar obteve 38 pontos e a última colocada conseguiu 37 pontos. sendo a, b, c números inteiros e positivos, um valor possível de n é ???
Alguém pode me ajudar com a resolução?
Segundo o gabarito a resposta é 11.
Obrigado.
-
RJ1572
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Fev 26, 2010 13:00
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Douglasm » Sex Mai 21, 2010 18:17
Olá RJ1572. Para resolver essa questão basta observarmos a divisão de pontos:
1ª colocada: x.a + y.b + z.c = 46 pontos
2ª colocada: x'.a + y'.b + z'.c = 38 pontos
3ª colocada: x''.a + y''.b + z''.c = 37 pontos
É evidente que (x + x' + x'') = n (assim como os respectivos y e z), pois existe um número de n de disputas em que só houve um vencedor. Deste modo, somando todas essas equações, encontramos:
n . (a + b + c) = 121
Agora devemos nos atentar ao fato de que n, assim como a, b e c, é um valor inteiro. Por conta disso, n é algum submúltiplo de 121. Fatorando 121, vemos que ele só pode ser fatorado como 11 x 11 ou 121 x 1. Sendo assim, n pode ser 1, 11 ou 121. Creio que n = 1 é descartado pelo problema, pois a rigor foram realizadas competições. No caso de n = 121, nós teríamos (a + b + c) = 1, o que contraria a afirmação inicial do problema que diz que a, b e c são inteiros e positivos. Desta forma, n = 11.
Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- QUESTÃO DE LÓGICA
por Matpas » Ter Ago 25, 2015 15:54
- 4 Respostas
- 3755 Exibições
- Última mensagem por Matpas

Qua Ago 26, 2015 10:42
Lógica
-
- Mais um questão de lógica
por my2009 » Ter Jan 17, 2012 11:00
- 1 Respostas
- 1488 Exibições
- Última mensagem por ant_dii

Ter Jan 17, 2012 15:14
Estatística
-
- Conjuntos - Questão de lógica
por juno » Ter Jan 24, 2012 13:42
- 2 Respostas
- 2525 Exibições
- Última mensagem por juno

Ter Jan 24, 2012 15:17
Álgebra Elementar
-
- Questão de lógica -IBGE
por my2009 » Seg Fev 01, 2016 18:44
- 1 Respostas
- 3508 Exibições
- Última mensagem por petras

Sex Dez 02, 2016 22:54
Lógica
-
- Lógica e Conjuntos, questão cabulosa.
por legendandom » Qui Abr 15, 2010 15:50
- 1 Respostas
- 2710 Exibições
- Última mensagem por Neperiano

Ter Set 27, 2011 19:58
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.