• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação produto/quociente

inequação produto/quociente

Mensagempor vhcs29 » Qui Abr 01, 2010 12:32

Tenho dúvidas na resolução da seguinte inequação:

\frac{x+1}{\ x+2} > \frac{x+3}{\ x+4}

O que fiz foi, passa o 2º termo p/ o primeiro, ficaria:

\frac{x+1}{\ x+2} - \frac{x+3}{\ x+4} > 0

depois, mmc;

\frac{(x+1)(x+4) - (x+3)(x+2)}{\ (x+2)(x+4)} > 0

Depois eu não sei o que fazer. Sei que o resultado esperado é {-4<x<-2}. Se alguém puder me dar uma ajuda eu agradeço.
vhcs29
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 01, 2010 12:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: inequação produto/quociente

Mensagempor estudandoMat » Sex Abr 02, 2010 11:00

Olá.
Bom desenvolvendo a conta na parte de cima da fraçao:

{x}^{2}+5x+4-{x}^{2}-5x-6 = +4-6 = -2

ficando:
\frac{-2}{(x+2)(x+4)}>0

agora desenvolvendo cada parte da fração:
1°Resultado: -2 (é sempre negativo ,"no varal")
2° Resultado: x+2 => x = -2 (eq. do primeiro grau , Regra do CAMA, (primeiro) sinal Contrario de "a" (depois) Mesmo sinal de "a")
3° Resultado: x+4 => x = -4 (eq. do primeiro grau , Regra do CAMA)

"Varal para achar o resultado"
_______ -4 ____-2__________
- 2 - - - - - - - - - - - - - -
(x+2) - - - - - - - 0 + + + Sinal seguindo a regra do CAMA
(x+4) - - 0 + + + + + + + Mesma coisa
result - -0 + + + 0 - - - -

Ele que resultados onde o x>0 (Positivo) , que é entre -4 < x < -2
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: inequação produto/quociente

Mensagempor vhcs29 » Sex Abr 02, 2010 12:59

Valeu!
vhcs29
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 01, 2010 12:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}