• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Notáveis

Produto Notáveis

Mensagempor Flavio Cacequi » Sex Mar 30, 2018 20:55

Sabe-se que x - 1/x =V5. Calcule o valor de x^6 - 1/x^6.
a)135V5
b)125V5
c)144V5
d)36V5
e)18V5
Flavio Cacequi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jun 06, 2017 17:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Produto Notáveis

Mensagempor Gebe » Sáb Mar 31, 2018 13:21

Flavio Cacequi escreveu:Sabe-se que x - 1/x =V5. Calcule o valor de x^6 - 1/x^6.
a)135V5
b)125V5
c)144V5
d)36V5
e)18V5


Bem, confesso que não consigui fazer essa questão do jeito mais apropriado (manipulando a expressão), mas como ninguem respondeu vou colocar a forma que eu utilizei pra chegar na resposta, letra c.
Antes, só por teimosia minha, não é um sinal de + ao inves do - na expressão x^6 - 1/x^6 ? Se fosse um + a questão seria bem mais simples.
Vamos então pra forma que eu utilizei.

1) Descobrir o valor de "x".
Multiplicando toda expressão ( x - 1/x = V5 ) por "x"
\\
x*(x-1/x)=x*\left(\sqrt[2]{5} \right)\\
\\
x^2-1=\sqrt[2]{5}x\\
\\
x^2-\sqrt[2]{5}x-1=0\\
\\

Resolvendo por Bhaskara
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{\left(\sqrt[2]{5} \right)^2-4*1*-1}}{2*1}\\
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{5+4}}{2}\\
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{9}}{2}\\
\\
x=\frac{\sqrt[2]{5}\pm3}{2}

Agora que vem a parte menos elegante da resolução. Escolhendo uma das raizes (pode ser qlq uma das duas, so muda o sinal no final), vamos achar a expressão pedida no braço. Como as raizes achadas estão separadas em dois termos devido a presença da raiz quadrada a conta fica muito extensa, logo vamos achar uma aproximação para \sqrt[2]{5}.

Por tentativa não é dificil achar que \sqrt[2]{5} é aproximadamente 2.23, logo x=\frac{2.23+3}{2}=2.62.
Agora achamos a expressão de x^6-\frac{1}{x^6}

x^6-\frac{1}{x^6}=2.62^6-\frac{1}{2.62^6}\approx323
Esse é o resultado utilizando a aproximação que fizemos, no entanto a questão da as respostas em termos de \sqrt[2]{5}.
Pra resolver esse problema, basta dividirmos a resposta encontrada por \sqrt[2]{5}\approx2.23

323=323*\frac{\sqrt[2]{5}}{2.23}=\frac{323}{2.23}*\sqrt[2]{5}\approx144.84\sqrt[2]{5}

Espero que tenha ajudado, bons estudos.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 95
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)