• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração - esse consegui desenvolver

Fatoração - esse consegui desenvolver

Mensagempor IsadoraLG » Qua Jul 09, 2014 21:47

Nesse caso, só fiquei em dúvida quanto a um passo do exercício:

(UNIFOR) Os números reais a e b, que satifazem a igualdade ({\sqrt[]{3} + 1})^{4} = a + b\sqrt[]{3} , são tais que a - b é igual a:
A)12
B)14
C)15
D)18

{a}^{4}+4{a}^{3}b+6{a}^{2}{b}^{2}+4a{b}^{3}+{b}^{4}

{\sqrt[]{3}}^{4} + {\sqrt[]{3}}^{3} .  1+6 ({\sqrt[]{3}})^{2}+{1}^{2} + 4{\sqrt[]{3}}^{3} . 1 + {1}^{4}

Com estas contas, chegamos a >>> ({\sqrt[]{3}}^{} .  \sqrt[]{3}) :

3 . 3 + 4 . 3\sqrt[]{3}+ 6 . 3 + 4\sqrt[]{3}+1    >>>> >>>> É nessa linha que entra minha dúvida: onde está, o que aconteceu com o {\sqrt[]{3} }^{3} da linha anterior?....
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: Fatoração - esse consegui desenvolver

Mensagempor DanielFerreira » Qua Jul 16, 2014 20:41

Isadora, não estou mui certo se entendi sua dúvida, mas...

\\ \sqrt{3^3} = \\\\ \sqrt{3^2 \cdot 3} = \\\\ 3\sqrt{3}


Poderíamos também resolvê-la da seguinte forma:

\\ (\sqrt{3} + 1)^4 = a + b\sqrt{3} \\\\ (\sqrt{3} + 1)^2 \cdot (\sqrt{3} + 1)^2 = a + b\sqrt{3} \\\\ (3 + 2\sqrt{3} + 1) \cdot (3 + 2\sqrt{3} + 1) = a + b\sqrt{3} \\\\ (4 + 2\sqrt{3}) \cdot(4 + 2\sqrt{3}) = a + b\sqrt{3} \\\\ (4 + 2\sqrt{3})^2 = a + b\sqrt{3} \\\\ 16 + 16\sqrt{3} + 12 = a + b\sqrt{3} \\\\ 28 + 16\sqrt{3} = a + b\sqrt{3}

Ora, temos então \boxed{a = 28} e \boxed{b = 16}.

Logo,

\\ a - b = 28 - 16 \\ \boxed{\boxed{a - b = 12}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59