por IsadoraLG » Qua Jul 09, 2014 21:47
Nesse caso, só fiquei em dúvida quanto a um passo do exercício:
(UNIFOR) Os números reais a e b, que satifazem a igualdade
![({\sqrt[]{3} + 1})^{4} = a + b\sqrt[]{3} ({\sqrt[]{3} + 1})^{4} = a + b\sqrt[]{3}](/latexrender/pictures/0389e2e3d25565a32e816fd73fde03de.png)
, são tais que a - b é igual a:
A)12
B)14
C)15
D)18

![{\sqrt[]{3}}^{4} + {\sqrt[]{3}}^{3} . 1+6 ({\sqrt[]{3}})^{2}+{1}^{2} + 4{\sqrt[]{3}}^{3} . 1 + {1}^{4} {\sqrt[]{3}}^{4} + {\sqrt[]{3}}^{3} . 1+6 ({\sqrt[]{3}})^{2}+{1}^{2} + 4{\sqrt[]{3}}^{3} . 1 + {1}^{4}](/latexrender/pictures/1198c916c6daaede60db964c8b59b926.png)
Com estas contas, chegamos a >>>
![({\sqrt[]{3}}^{} . \sqrt[]{3}) ({\sqrt[]{3}}^{} . \sqrt[]{3})](/latexrender/pictures/780004254ec53db8a41b976979942406.png)
:
![3 . 3 + 4 . 3\sqrt[]{3}+ 6 . 3 + 4\sqrt[]{3}+1 >>>> 3 . 3 + 4 . 3\sqrt[]{3}+ 6 . 3 + 4\sqrt[]{3}+1 >>>>](/latexrender/pictures/9aad387f7df7c14d72f04718b1cb34df.png)
>>>> É nessa linha que entra minha dúvida: onde está, o que aconteceu com o
![{\sqrt[]{3} }^{3} {\sqrt[]{3} }^{3}](/latexrender/pictures/b0250ab3afa8adb1cf2b0abeeab57fb9.png)
da linha anterior?....
-
IsadoraLG
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Ter Ago 27, 2013 18:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão em Recursos Humanos
- Andamento: formado
por DanielFerreira » Qua Jul 16, 2014 20:41
Isadora, não estou mui certo se entendi sua dúvida, mas...

Poderíamos também resolvê-la da seguinte forma:

Ora, temos então

e

.
Logo,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Talvez fatoração, mas não consegui desenvolver
por IsadoraLG » Qua Jul 09, 2014 21:13
- 1 Respostas
- 1094 Exibições
- Última mensagem por e8group

Qui Jul 10, 2014 00:58
Álgebra Elementar
-
- [Função F] Não consigo desenvolver esse exercício
por thayna_rosa » Seg Nov 12, 2012 18:35
- 4 Respostas
- 2146 Exibições
- Última mensagem por thayna_rosa

Seg Nov 12, 2012 20:58
Funções
-
- [Equação Irracional] - Como desenvolver esse exercício?
por Crouff » Qui Jul 05, 2012 11:55
- 2 Respostas
- 1725 Exibições
- Última mensagem por Crouff

Qui Jul 05, 2012 12:29
Sistemas de Equações
-
- Fatoração - consegui fazer apenas o óbvio
por IsadoraLG » Qua Jul 09, 2014 21:19
- 1 Respostas
- 1298 Exibições
- Última mensagem por e8group

Qui Jul 10, 2014 02:12
Álgebra Elementar
-
- [Fatoração] Não estou conseguindo resolver esse exercício
por Ze Birosca » Qua Fev 04, 2015 18:55
- 4 Respostas
- 2803 Exibições
- Última mensagem por Ze Birosca

Qua Fev 04, 2015 21:56
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.