• Anúncio Global
    Respostas
    Exibições
    Última mensagem

consigo na lógica mas na prática ta dificll

consigo na lógica mas na prática ta dificll

Mensagempor Negte » Qui Fev 06, 2014 17:50

Vestibulinho.

Não consigo resolver na teoria.

Existem 2 torneiras, para encher um tanque vazio. se apenas a primeira fosse aberta por completo,levaria 24 hrs. para encher um tanque.
E se apenas a segunda fosse aberta por completo levaria 48 hrs. para encher o mesmo tanque.
Se eu abrisse as duas juntas....... quanto tempo levaria para encher o tanque?

A)12
B)30
C)20
D)24
*E)16
Negte
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Jan 02, 2014 12:33
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecânica
Andamento: formado

Re: consigo na lógica mas na prática ta dificll

Mensagempor Russman » Qui Fev 06, 2014 18:22

Comece identificando as vazões de cada torneira. Supondo-as independentes do tempo, podemos escrever

v = \frac{V}{t}

onde v é a vazão e V o volume preenchido no tempo t.

Assim, as vazões são , respectivamente, v_1 = \frac{V}{24} e v_2 = \frac{V}{48}.

Agora, como as torneiras serão abertas simultaneamente, deverão funcionar como uma única de vazão v_3 = v_1 + v_2. Assim,

v_3 = v_1 + v_2
\frac{V}{t} = \frac{V}{24} + \frac{V}{48}

Simplificando V, temos que o tempo t que o tanque será preenchido será tal que

\frac{1}{t} = \frac{1}{24} + \frac{1}{48}

Daí, calculamos t=16.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: consigo na lógica mas na prática ta dificll

Mensagempor Negte » Qui Fev 06, 2014 18:30

Russman escreveu:Comece identificando as vazões de cada torneira. Supondo-as independentes do tempo, podemos escrever

v = \frac{V}{t}

onde v é a vazão e V o volume preenchido no tempo t.

Assim, as vazões são , respectivamente, v_1 = \frac{V}{24} e v_2 = \frac{V}{48}.

Agora, como as torneiras serão abertas simultaneamente, deverão funcionar como uma única de vazão v_3 = v_1 + v_2. Assim,

v_3 = v_1 + v_2
\frac{V}{t} = \frac{V}{24} + \frac{V}{48}

Simplificando V, temos que o tempo t que o tanque será preenchido será tal que

\frac{1}{t} = \frac{1}{24} + \frac{1}{48}

Daí, calculamos t=16.



obrigado
Negte
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Jan 02, 2014 12:33
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecânica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}