• Anúncio Global
    Respostas
    Exibições
    Última mensagem

consigo na lógica mas na prática ta dificll

consigo na lógica mas na prática ta dificll

Mensagempor Negte » Qui Fev 06, 2014 17:50

Vestibulinho.

Não consigo resolver na teoria.

Existem 2 torneiras, para encher um tanque vazio. se apenas a primeira fosse aberta por completo,levaria 24 hrs. para encher um tanque.
E se apenas a segunda fosse aberta por completo levaria 48 hrs. para encher o mesmo tanque.
Se eu abrisse as duas juntas....... quanto tempo levaria para encher o tanque?

A)12
B)30
C)20
D)24
*E)16
Negte
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Jan 02, 2014 12:33
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecânica
Andamento: formado

Re: consigo na lógica mas na prática ta dificll

Mensagempor Russman » Qui Fev 06, 2014 18:22

Comece identificando as vazões de cada torneira. Supondo-as independentes do tempo, podemos escrever

v = \frac{V}{t}

onde v é a vazão e V o volume preenchido no tempo t.

Assim, as vazões são , respectivamente, v_1 = \frac{V}{24} e v_2 = \frac{V}{48}.

Agora, como as torneiras serão abertas simultaneamente, deverão funcionar como uma única de vazão v_3 = v_1 + v_2. Assim,

v_3 = v_1 + v_2
\frac{V}{t} = \frac{V}{24} + \frac{V}{48}

Simplificando V, temos que o tempo t que o tanque será preenchido será tal que

\frac{1}{t} = \frac{1}{24} + \frac{1}{48}

Daí, calculamos t=16.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: consigo na lógica mas na prática ta dificll

Mensagempor Negte » Qui Fev 06, 2014 18:30

Russman escreveu:Comece identificando as vazões de cada torneira. Supondo-as independentes do tempo, podemos escrever

v = \frac{V}{t}

onde v é a vazão e V o volume preenchido no tempo t.

Assim, as vazões são , respectivamente, v_1 = \frac{V}{24} e v_2 = \frac{V}{48}.

Agora, como as torneiras serão abertas simultaneamente, deverão funcionar como uma única de vazão v_3 = v_1 + v_2. Assim,

v_3 = v_1 + v_2
\frac{V}{t} = \frac{V}{24} + \frac{V}{48}

Simplificando V, temos que o tempo t que o tanque será preenchido será tal que

\frac{1}{t} = \frac{1}{24} + \frac{1}{48}

Daí, calculamos t=16.



obrigado
Negte
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Jan 02, 2014 12:33
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecânica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59