• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação] Triplas de números reais

[Equação] Triplas de números reais

Mensagempor CJunior » Ter Fev 04, 2014 17:48

Determine todas as triplas de números reais \left(x,y,z \right) que são solução da equação {4x}^{4}-{x}^{2}({4y}^{4}+{4z}^{4}-1)-2xyz+{y}^{8}+{2y}^{4}{z}^{4}+{y}^{2}{z}^{2}+{z}^{8}=0.

OBS.: Já usei fatoração, mas não consegui resolver a equação!!!
CJunior
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Jan 26, 2014 13:18
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: [Equação] Triplas de números reais

Mensagempor young_jedi » Ter Fev 04, 2014 22:39

{4x}^{4}-{x}^{2}({4y}^{4}+{4z}^{4}-1)-2xyz+{y}^{8}+{2y}^{4}{z}^{4}+{y}^{2}{z}^{2}+{z}^{8}=0

{4x}^{4}-{x}^{2}({4y}^{4}+{4z}^{4}-1)-2xyz+{y}^{2}{z}^{2}+(z^4+y^4)^2=0

{4x}^{4}-4.x^{2}({4y}^{4}+{4z}^{4})+x^2-2xyz+{y}^{2}{z}^{2}+(z^4+y^4)^2=0

{4x}^{4}-4.x^{2}({4y}^{4}+{4z}^{4})+(x-zy)^2+(z^4+y^4)^2=0

{4x}^{4}-4.x^{2}({4y}^{4}+{4z}^{4})+(z^4+y^4)^2+(x-zy)^2=0

\left(2x^{2}-(z^4+y^4)\right)^2+(x-zy)^2=0

veja que temos a soma de dois quadrados igual a zero, o unico modo disto ocorrer é se as duas parcelas forem iguais a 0 poranto

x=zy

2x^2-(y^4+z^4)=0

2y^2z^2-y^4-z^4=0

y^4-2y^2z^2+z^4=0

(y^2-z^2)^2=0

y^2=z^2

podemos então ter

y=z e -y=z

portanto as triplas sera do tipo

(y^2,y,y) ou (-y^2,y,-y)

para qualquer y real
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?