por anneliesero » Sáb Abr 27, 2013 22:46
Olá, pessoal
poderia me ajudar aqui? Travei neste exercício e não estou conseguindo achar o resultado.
![\sqrt[]{\frac{a\sqrt[]{b}}{\sqrt[3]{ab}}}.\sqrt[4]{b} \sqrt[]{\frac{a\sqrt[]{b}}{\sqrt[3]{ab}}}.\sqrt[4]{b}](/latexrender/pictures/1be02f2b2d16f04ba9099bc98be53451.png)
O resultado é
![\sqrt[3]{ab} \sqrt[3]{ab}](/latexrender/pictures/b75c3a13b63e2969ab696ba4b2579ab6.png)
.
Fiz assim:
![\frac{\sqrt[2]{a\sqrt[2]{b}}}{\sqrt[2]{\sqrt[3]{ab}}}
\frac{\sqrt[2]{\sqrt[2]{b{a}^{2}}}}{\sqrt[6]{\sqrt[2]{ab}}}
\frac{\sqrt[4]{\sqrt[2]{b{a}^{2}}}}{\sqrt[6]{\sqrt[2]{ab}}} \frac{\sqrt[2]{a\sqrt[2]{b}}}{\sqrt[2]{\sqrt[3]{ab}}}
\frac{\sqrt[2]{\sqrt[2]{b{a}^{2}}}}{\sqrt[6]{\sqrt[2]{ab}}}
\frac{\sqrt[4]{\sqrt[2]{b{a}^{2}}}}{\sqrt[6]{\sqrt[2]{ab}}}](/latexrender/pictures/115e604b9f72482bdf126d3cc9bc6fa2.png)
Não sei porque deu esse erro mas é dividido.
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
-
anneliesero
- Usuário Parceiro

-
- Mensagens: 86
- Registrado em: Qui Set 13, 2012 17:58
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Sáb Abr 27, 2013 23:48
Note que
![\sqrt[4]{b} = \sqrt{\sqrt{b}} \sqrt[4]{b} = \sqrt{\sqrt{b}}](/latexrender/pictures/e71547184630650fb0b3059dfaa296e9.png)
.
Assim ,
![\sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}} \sqrt[4]{b} = \sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}}\sqrt{\sqrt{b}} = \sqrt{\frac{a\sqrt{b} \cdot \sqrt{b} }{\sqrt[3]{ab}}} = \sqrt{\frac{ab}{\sqrt[3]{ab}}} \sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}} \sqrt[4]{b} = \sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}}\sqrt{\sqrt{b}} = \sqrt{\frac{a\sqrt{b} \cdot \sqrt{b} }{\sqrt[3]{ab}}} = \sqrt{\frac{ab}{\sqrt[3]{ab}}}](/latexrender/pictures/7b215c536b033d611cd9fc993a55ed3f.png)
.
Multiplicando-se em cima e em baixo dentro do radical por
![\sqrt[3]{(ab)^2} \sqrt[3]{(ab)^2}](/latexrender/pictures/4be179f3c753c1144909a839b83bbdcb.png)
segue o resultado .
Outra forma seria reescrever o radical em potência com o expoente fracionário .
Temos :
i)
ii)
iii)

.
iv)
Daí ,
![\sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}} \sqrt[4]{b} = b^{1/12} a^{1/3} b^{1/4} = b^{1/12 +1/4} a^{1/3} = b^{4/12} a^{1/3} = b^{1/3} a^{1/3} = (ab)^{1/3} = \sqrt[3]{ab} \sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}} \sqrt[4]{b} = b^{1/12} a^{1/3} b^{1/4} = b^{1/12 +1/4} a^{1/3} = b^{4/12} a^{1/3} = b^{1/3} a^{1/3} = (ab)^{1/3} = \sqrt[3]{ab}](/latexrender/pictures/23a47004324e88c0b8de60364cbc12f0.png)
Infelizmente não conseguir visualizar a sua resolução por causa da configuração com o

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Potenciação e Radiciação
por Carlos22 » Qua Abr 13, 2011 22:06
- 1 Respostas
- 1819 Exibições
- Última mensagem por FilipeCaceres

Qua Abr 13, 2011 22:27
Logaritmos
-
- [Potenciação e radiciação]
por SCHOOLGIRL+T » Qua Nov 07, 2012 21:19
- 4 Respostas
- 2486 Exibições
- Última mensagem por SCHOOLGIRL+T

Sex Nov 09, 2012 23:44
Álgebra Elementar
-
- [Potenciação e Radiciação]
por JU201015 » Seg Nov 12, 2012 22:06
- 2 Respostas
- 1817 Exibições
- Última mensagem por JU201015

Ter Nov 13, 2012 09:08
Álgebra Elementar
-
- Potenciação e radiciação
por anneliesero » Sáb Abr 27, 2013 22:51
- 1 Respostas
- 1167 Exibições
- Última mensagem por young_jedi

Dom Abr 28, 2013 21:20
Álgebra Elementar
-
- Potenciação e radiciação
por anneliesero » Sáb Abr 27, 2013 22:53
- 1 Respostas
- 1045 Exibições
- Última mensagem por nakagumahissao

Dom Abr 28, 2013 02:42
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.