• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação e radiciação

Potenciação e radiciação

Mensagempor anneliesero » Sáb Abr 27, 2013 22:46

Olá, pessoal

poderia me ajudar aqui? Travei neste exercício e não estou conseguindo achar o resultado.

\sqrt[]{\frac{a\sqrt[]{b}}{\sqrt[3]{ab}}}.\sqrt[4]{b}

O resultado é \sqrt[3]{ab} .

Fiz assim:

\frac{\sqrt[2]{a\sqrt[2]{b}}}{\sqrt[2]{\sqrt[3]{ab}}}

\frac{\sqrt[2]{\sqrt[2]{b{a}^{2}}}}{\sqrt[6]{\sqrt[2]{ab}}}

 \frac{\sqrt[4]{\sqrt[2]{b{a}^{2}}}}{\sqrt[6]{\sqrt[2]{ab}}}


Não sei porque deu esse erro mas é dividido.
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação e radiciação

Mensagempor e8group » Sáb Abr 27, 2013 23:48

Note que

\sqrt[4]{b} = \sqrt{\sqrt{b}} .

Assim ,

\sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}} \sqrt[4]{b}  = \sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}}\sqrt{\sqrt{b}}  = \sqrt{\frac{a\sqrt{b} \cdot \sqrt{b} }{\sqrt[3]{ab}}}  = \sqrt{\frac{ab}{\sqrt[3]{ab}}} .

Multiplicando-se em cima e em baixo dentro do radical por \sqrt[3]{(ab)^2} segue o resultado .

Outra forma seria reescrever o radical em potência com o expoente fracionário .

Temos :

i) \sqrt[4]{b} = b^{1/4}

ii) \sqrt[3]{ab} = (ab)^{1/3} = a^{1/3} \cdot b^{1/3}

iii) \sqrt{b}  = b^{1/2} .

iv) \sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}} = \sqrt{\frac{a b^{1/2} }{ a^{1/3} \cdot b^{1/3}}}  = \left(\frac{a b^{1/2} }{ a^{1/3} \cdot b^{1/3}}\right)^{1/2} = \left(\frac{b^{1/2} }{b^{1/3}} \cdot \frac{a}{a^{1/3}}\right)^{1/2} = \left(b^{1/2 - 1/3} \cdot a^{1-1/3}\right)^{1/2}  = (b^{1/6} a^{2/3})^{1/2} =(b^{1/6})^{1/2} \cdot (a^{2/3})^{1/2} = b^{1/12} a^{1/3}

Daí ,

\sqrt{\frac{a\sqrt{b}}{\sqrt[3]{ab}}} \sqrt[4]{b} = b^{1/12} a^{1/3} b^{1/4}  =  b^{1/12 +1/4} a^{1/3} =  b^{4/12} a^{1/3} = b^{1/3} a^{1/3}  = (ab)^{1/3} = \sqrt[3]{ab}

Infelizmente não conseguir visualizar a sua resolução por causa da configuração com o \LaTeX
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.