por marcosmuscul » Ter Mar 19, 2013 15:56
é uma questão sobre estudo do sinal de função.
no final ficou dois resultados como possíveis para o intervalo [1-?2,1+?2].
segue o a imagem da resolução digitalizada:

-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
por marcosmuscul » Qui Mar 21, 2013 20:20
há algum nobre que possa me ajudar?
-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
por e8group » Qui Mar 21, 2013 21:59
Desculpe mas não compreendi sua resolução ,não ficou claro .
Sua função é esta

?
Se sim ,podemos retirar os módulos que por definição ,
e

.
Façamos algumas observações :
Considere os intervalos
![I_1 = \left(-\infty ,-1 \right] , I_2 = \left(-1, -\frac{1}{2} \right) , I_3 = \left[ \frac{1}{2} , 1\right ) , I_4 = \left[ 1 ,+ \infty\right ) I_1 = \left(-\infty ,-1 \right] , I_2 = \left(-1, -\frac{1}{2} \right) , I_3 = \left[ \frac{1}{2} , 1\right ) , I_4 = \left[ 1 ,+ \infty\right )](/latexrender/pictures/21bc3333453853fea2041315171edbe8.png)
.
Temos :
i) Em

e
ii) Em

e

iii) Em

e

iv) Em

e

Assim ,obtemos
Faça o estudo do sinal da função em cada intervalo .Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por marcosmuscul » Sex Mar 22, 2013 00:14
Na verdade é

editei minha resolução pra tentar expor qual foi minha linha de raciocínio.

-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Estudo de sinal dessa função]
por wilsonfilho0 » Ter Jun 14, 2016 17:06
- 1 Respostas
- 2330 Exibições
- Última mensagem por vitor_jo

Dom Jul 10, 2016 04:53
Funções
-
- Onde esta o meu erro
por VERTAO » Dom Mar 13, 2011 20:37
- 1 Respostas
- 2575 Exibições
- Última mensagem por Rogerio Murcila

Qua Mar 16, 2011 23:11
Matemática Financeira
-
- [Integral por partes] onde está o erro???
por Fabio Wanderley » Seg Mai 28, 2012 20:21
- 2 Respostas
- 2346 Exibições
- Última mensagem por Fabio Wanderley

Ter Mai 29, 2012 13:42
Cálculo: Limites, Derivadas e Integrais
-
- Expressões, onde esta o erro que eu não achei
por teilom » Sáb Ago 11, 2012 20:37
- 2 Respostas
- 3298 Exibições
- Última mensagem por teilom

Dom Ago 12, 2012 12:32
Equações
-
- Função ( Estudo do sinal )
por clara » Dom Jun 21, 2009 20:55
- 1 Respostas
- 5213 Exibições
- Última mensagem por Molina

Seg Jun 22, 2009 12:57
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.