• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração(Não sei como fazer).

Fatoração(Não sei como fazer).

Mensagempor replay » Qua Nov 21, 2012 11:24

2- Fatore: (a+1)^2 + 2(a+1)+1

Estou tendo pesadas duvidas sobre os passos para se fatorar.
Primeiro sei que preciso pegar termos em comum.
Vejo que o +1 é o termo comum, pelo menos eu acho.
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fatoração(Não sei como fazer).

Mensagempor DanielFerreira » Qua Nov 21, 2012 19:07

Replay,
boa noite!
Trata-se de um trinômio quadrado perfeito!

Exemplo I: Ida.

\\(x + 2)^2 = \\ (x)^2 + 2 \cdot x \cdot 2 + (2)^2 = \\ \boxed{x^2 + 4x + 4}


Exemplo II: Volta.

\\x^2 + 2x + 1 = \\ \boxed{(x + 1)^2}


replay escreveu:2- Fatore: (a+1)^2 + 2(a+1)+1

Estou tendo pesadas duvidas sobre os passos para se fatorar.
Primeiro sei que preciso pegar termos em comum.
Vejo que o +1 é o termo comum, pelo menos eu acho.

\\ (a + 1)^2 + 2(a + 1) + 1 = \\\\ \left [ (a + 1) + 1]^2 =  \right ] \\\\ (a + 1 + 1)^2 = \\\\ \boxed{\boxed{(a + 2)^2}}

Comente qualquer dúvida!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Fatoração(Não sei como fazer).

Mensagempor ednaldo1982 » Qua Nov 21, 2012 21:19

replay escreveu:2- Fatore: (a+1)^2 + 2(a+1)+1

Estou tendo pesadas duvidas sobre os passos para se fatorar.
Primeiro sei que preciso pegar termos em comum.
Vejo que o +1 é o termo comum, pelo menos eu acho.



CHAME (a + 1) de X:

Logo você terá:

X² + 2.X + 1

Para se fatorar na forma do trinômio quadrado perfeito, você verifica se o dobro do produto das raizes quadradas do primeiro e do terceiro termos é o mesmo valor do termo central.

Neste caso:

Raiz quadrada de X² = X
Raiz quadrada de 1 = 1

Dobro do produto das raizes:
2 .( x . 1) = 2x (que é igual ao termo central [sem considerar o sinal] )

Portanto: Você teria (X + 1) . (X + 1) ou (X -1) . (X - 1) dependendo do sinal da função dada. Fazendo a distributiva você verifica qual das duas fica de acordo com o enunciado.

Logo, você teria:
(X + 1)²

Porém, seu X = (a +1)

Trocando X por (a+1), temos:

( a+1 + 1)² = (a + 2)²

Valeu!?

Um abraço, Professor Ednaldo Raposeiro
Avatar do usuário
ednaldo1982
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Seg Mar 26, 2012 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: Fatoração(Não sei como fazer).

Mensagempor replay » Qui Nov 22, 2012 09:31

Entendi, o problema foi que acabei de estudar Fatoração com agrupamento e me cai que a primeira questão pede Trinomio Quadrado Perfeito, que é um conceito um pouco mais avançado.
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fatorachção(Não sei como fazer).

Mensagempor replay » Seg Dez 10, 2012 17:21

valeu acho que já consegui
replay
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Dom Fev 19, 2012 23:43
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?